The work provides a new model for the prediction of the MAO-A and -B inhibitor activity by the use of combined complex networks and QSAR methodologies. On the basis of the obtained model, we prepared and assayed 33 coumarin derivatives, and the theoretical prediction was compared with the experimental activity data. The model correctly predicted 27 compounds, and most of the active derivatives showed IC 50 values in the muM-nM range against both the MAO-A and MAO-B isoforms. Compound 14 shows the same MAO-A inhibitory activity (IC 50 = 7.2 nM), as clorgyline used as a reference inhibitor and has the highest MAO-A specificity (1000-fold higher compared to MAO-B). On the other hand, compounds 24 (IC 50 = 1.2 nM) and 28 (IC 50 = 1.5 nM) show higher activity than selegiline (IC 50 = 19.6 nM) and high MAO-B selectivity with 100-fold and 1600-fold inhibition levels, with respect to the MAO-A isoform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.