Several cities in Sweden are aiming for climate neutrality within a few decades and for negative emissions thereafter. Combined biochar, heat, and power production is an option to achieve carbon sequestration for cities relying on biomass-fuelled district heating, while biochar use could mitigate environmental pollution and greenhouse gas emissions from the agricultural sector. By using prospective life cycle assessment, the climate impact of the pyrolysis of woodchips in Stockholm is compared with two reference scenarios based on woodchip combustion. The pyrolysis of woodchips produces heat and power for the city of Stockholm, and biochar whose potential use as a feed and manure additive on Swedish dairy farms is explored. The climate change mitigation trade-off between bioenergy production and biochar carbon sequestration in Stockholm's context is dominated by the fate of marginal power. If decarbonisation of power is achieved, building a new pyrolysis plant becomes a better climate option than conventional combustion. Effects of cascading biochar use in animal husbandry are uncertain but could provide 10−20% more mitigation than direct biochar soil incorporation. These results help design regional biochar systems that combine negative carbon dioxide emissions with increased methane and nitrous oxide mitigation efforts and can also guide the development of minimum performance criteria for biochar products.
Biochar is a material derived from biomass pyrolysis that is used in urban applications. The environmental impacts of new biochar products have however not been assessed. Here, the life cycle assessments of 5 biochar products (tree planting, green roofs, landscaping soil, charcrete, and biofilm carrier) were performed for 7 biochar supply-chains in 2 energy contexts. The biochar products were benchmarked against reference products and oxidative use of biochar for steel production. Biochar demand was then estimated, using dynamic material flow analysis, for a new city district in Uppsala, Sweden. In a decarbonised energy system and with high biochar stability, all biochar products showed better climate performance than the reference products, and most applications outperformed biomass use for decarbonising steel production. The climate benefits of using biochar ranged from − 1.4 to − 0.11 tonne CO2-eq tonne−1 biochar in a decarbonised energy system. In other environmental impact categories, biochar products had either higher or lower impacts than the reference products, depending on biochar supply chain and material substituted, with trade-offs between sectors and impact categories. However, several use-phase effects of biochar were not included in the assessment due to knowledge limitations. In Uppsala’s new district, estimated biochar demand was around 1700 m3 year−1 during the 25 years of construction. By 2100, 23% of this biochar accumulated in landfill, raising questions about end-of-life management of biochar-containing products. Overall, in a post-fossil economy, biochar can be a carbon dioxide removal technology with benefits, but biochar applications must be designed to maximise co-benefits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.