Highly cross-linked formulations of ultrahigh-molecular-weight polyethylene (XLPE) offer exceptional wear resistance for total joint arthroplasty but are offset with a reduction in postyield and fatigue fracture properties in comparison to conventional ultrahigh-molecular-weight polyethylene (UHMWPE). Oxidation resistance is also an important property for the longevity of total joint replacements (TJRs) as formulations of UHMWPE or XLPE utilizing radiation methods are susceptible to free radical generation and subsequent embrittlement. The balance of oxidation, wear, and fracture properties is an enduring concern for orthopedic polymers used as the bearing surface in total joint arthroplasty. Optimization of material properties is further challenged in designs that make use of locking mechanisms, notches, or other stress concentrations that can render the polymer susceptible to fracture due to elevated local stresses. Clinical complications involving impingements, dislocations, or other biomechanical overloads can exacerbate stresses and negate benefits of improved wear resistance provided by XLPE. This work examines trade-offs that factor into the use of XLPE in TJR implants.
Retrieval studies of total hip replacements with highly cross-linked ultra-high-molecular-weight polyethylene liners have shown much less surface damage than with conventional ultra-high-molecular-weight polyethylene liners. A recent revision hip replacement for recurrent dislocation undertaken after only five months revealed a highly cross-linked polyethylene liner with a large area of visible delamination. In order to determine the cause of this unusual surface damage, we analysed the bearing surfaces of the cobalt-chromium femoral head and the acetabular liner with scanning electron microscopy, energy dispersive x-ray spectroscopy and optical profilometry. We concluded that the cobalt-chromium modular femoral head had scraped against the titanium acetabular shell during the course of the dislocations and had not only roughened the surface of the femoral head but also transferred deposits of titanium onto it. The largest deposits were 1.6 microm to 4.3 microm proud of the surrounding surface and could lead to increased stresses in the acetabular liner and therefore cause accelerated wear and damage. This case illustrates that dislocations can leave titanium deposits on cobalt-chromium femoral heads and that highly cross-linked ultra-high-molecular-weight polyethylene remains susceptible to surface damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.