Longitudinal relaxation time in the rotating frame (T1ρ) was measured using continuous wave irradiation in normal and infarcted mouse myocardium in vivo. Significant increase in T1ρ was found after 7 days of infarction when compared with reference myocardium or in myocardium before infarction. Cine MRI and histology were performed to verify the severity of infarction. The time course of T1ρ in the infarct fits better with granulation and scar tissue formation than necrosis and edema. The results of the study show that T1ρ could potentially be a noninvasive quantitative marker for tissue remodeling after ischemic damage.
Heart has a wide lymphatic network but the importance of cardiac lymphatic system in heart diseases has remained unclear. Vascular Endothelial Growth Factor Receptor 3 (VEGFR3) is a key molecule in the development and maintenance of cardiac lymphatic vessels. Here we characterized the role of VEGFR3 in healthy hearts and after myocardial infarction (MI) by using sVEGFR3 transgenic mice expressing a soluble decoy VEGFR3 under K14 promoter and Chy mice which have an inactivating mutation in the VEGFR3 gene. Cardiac lymphatic vessels were significantly dilated in the healthy hearts of sVEGFR3 mice when compared to controls. Lymphatic vessels formed large sheet-like structures in Chy mice. Attenuated VEGFR3 signaling led to a more severe MI predisposing to a significantly higher mortality in sVEGFR3 mice than in control mice. sVEGFR3 mice displayed intramyocardial hemorrhages in the infarcted area indicating hyperpermeability of the vasculature. Furthermore, novel MRI methods TRAFF2 and TRAFF4 and histological analysis revealed a modified structure of the fibrotic infarcted area in sVEGFR3 mice. In conclusion, the downregulation of VEGFR3 signaling modifies the structure of cardiac lymphatic network and causes vascular leakiness and increased mortality after MI.
Type 2 diabetes mellitus (T2DM) is a major risk factor for heart disease. Mortality rates after myocardial infarction (MI) are significantly increased in T2DM patients because of dysfunctional left ventricle (LV). However, molecular pathways underlying accelerated heart failure (HF) after MI in T2DM remain unclear. We investigated the underlying mechanisms by inducing MI in a well-established model of T2DM and control mice. Cardiac imaging revealed a significantly decreased global left ventricular ejection fraction in parallel with increased mortality after MI in T2DM mice compared with control mice. Genome-wide mRNA sequencing, immunoblot, electron microscopy, together with immunofluorescence staining for LC3 and p62 indicated an impaired mitophagy in peri-infarct regions of LV in T2DM mice compared with control mice. Furthermore, defective mitophagy was associated with an increased release of mitochondrial DNA, resulting in Aim2 and NLRC4 inflammasome and caspase-I hyperactivation in cardiomyocytes and cardiac macrophages in peri-infarct regions of LV in T2DM mice. Consistent with inflammasome and caspase-I hyperactivation, cardiomyocyte death and IL-18 secretion were increased in T2DM mice. Our results indicate that T2DM aggravates HF after MI through defective mitophagy, associated exaggerated inflammasome activation, cell death, and IL-18 secretion, suggesting that restoring mitophagy and inhibiting inflammasome activation may serve as novel targets for the prevention and treatment of HF in T2DM.
BackgroundTwo days after myocardial infarction (MI), the infarct consists mostly on necrotic tissue, and the myocardium is transformed through granulation tissue to scar in two weeks after the onset of ischemia in mice. In the current work, we determined and optimized cardiovascular magnetic resonance (CMR) methods for the detection of MI size during the scar formation without contrast agents in mice.MethodsWe characterized MI and remote areas with rotating frame relaxation time mapping including relaxation along fictitious field in nth rotating frame (RAFFn), T1ρ and T2 relaxation time mappings at 1, 3, 7, and 21 days after MI. These results were compared to late gadolinium enhancement (LGE) and Sirius Red-stained histology sections, which were obtained at day 21 after MI.ResultsAll relaxation time maps showed significant differences in relaxation time between the MI and remote area. Areas of increased signal intensities after gadolinium injection and areas with increased TRAFF2 relaxation time were highly correlated with the MI area determined from Sirius Red-stained histology sections (LGE: R2 = 0.92, P < 0.01, TRAFF2: R2 = 0.95, P < 0.001). Infarct area determined based on T1ρ relaxation time correlated highly with Sirius Red histology sections (R2 = 0.97, P < 0.01). The smallest overestimation of the LGE-defined MI area was obtained for TRAFF2 (5.6 ± 4.2%) while for T1ρ overestimation percentage was > 9% depending on T1ρ pulse power.ConclusionT1ρ and TRAFF2 relaxation time maps can be used to determine accurately MI area at various time points in the mouse heart. Determination of MI size based on TRAFF2 relaxation time maps could be performed without contrast agents, unlike LGE, and with lower specific absorption rate compared to on-resonance T1ρ relaxation time mapping.
The identification of areas with regenerative potential in ischemic tissues would allow the targeting of treatments supporting tissue recovery. The regeneration process involves the activation of several cellular and molecular responses which could be detected using magnetic resonance imaging (MRI). However, to date, magnetic resonance (MR) relaxation parameters have received little attention in the diagnosis and follow-up of limb ischemia. The purpose of this study was to evaluate the feasibility of different MRI relaxation and diffusion tensor imaging parameters in the detection of areas showing early signs of regeneration in ischemic mouse skeletal muscles. T and T relaxation time constants, together with T , T and diffusion tensor imaging, were evaluated to differentiate areas of regeneration in a mouse hind limb ischemia model before and 0, 1, 4, 7, 14 and 30 days after ischemia. All the measured relaxation times were longer in the areas of early regeneration compared with normal muscle tissue. The relaxation times increased after ischemia in the ischemic muscles, reaching a maximum at 4-7 days after occlusion, coinciding with the appearance of early signs of regeneration. Fractional anisotropy decreased significantly (p < 0.05) on days 1-4, whereas mean diffusivity, λ and λ decreased later, starting at day 7 after ischemia compared with the pre-operational time point. The percentages of areas with different tissue morphologies were determined based on histological analysis of the ischemic muscle cross-sections, and correlations between the percentages obtained and different relaxation times were calculated. The highest correlation between relaxation times and histology was achieved with T , T and T (R = 0.96, R = 0.92 and R = 0.84, respectively, p < 0.01) Early regenerative changes were visible using T , T and T MR relaxation time constants in skeletal muscle after ischemia. These markers could potentially be used for the identification of targets for therapies supporting muscle regeneration after ischemic injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.