Deep Learning (DL) has marked the beginning of a new era in computer science, particularly in Machine Learning (ML). Nowadays, there are many fields where DL is applied such as speech recognition, automatic navigation systems, image processing, etc [1]. In this paper, a Convolutional Neural Network (CNN), more precisely a CNN built on top of DenseNet169, is proven to be helpful in predicting object distance in computer-generated holographic images. The problem is addressed as a classification problem where 101 classes of images were generated, each class corresponding to a different distance value from the object at a micrometer scale. Experiments show that the proposed network is efficient in this context, being able to classify with a 100% accuracy level if trained properly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.