Steroidogenesis depends on the delivery of free cholesterol to the inner mitochondrial membrane by StAR (steroidogenic acute regulatory protein). Mutations in the StAR gene leads to proteins with limited cholesterol-binding capacity. This gives rise to the accumulation of cytoplasmic cholesterol, a deficit in steroid hormone production and to the medical condition of lipoid congenital adrenal hyperplasia. A detailed understanding of the mechanism of the specific binding of free cholesterol by StAR would be a critical asset in understanding the molecular origin of this disease. Previous studies have led to the proposal that the C-terminal alpha-helix 4 of StAR was undergoing a folding/unfolding transition. This transition is thought to gate the cholesterol-binding site. Moreover, a conserved salt bridge (Glu169-Arg188) in the cholesterol-binding site is also proposed to be critical to the binding process. Interestingly, some of the documented clinical mutations occur at this salt bridge (E169G, E169K and R188C) and in the C-terminal alpha-helix 4 (L275P). In the present study, using rationalized mutagenesis, activity assays, CD, thermodynamic studies and molecular modelling, we characterized the alpha-helix 4 mutations L271N and L275P, as well as the salt bridge double mutant E169M/R188M. The results provide experimental validation for the gating mechanism of the cholesterol-binding site by the C-terminal alpha-helix and the importance of the salt bridge in the binding mechanism. Altogether, our results offer a molecular framework for understanding the impact of clinical mutations on the reduction of the binding affinity of StAR for free cholesterol.
Steroidogenesis depends on the delivery of cholesterol from the outer to the inner mitochondrial membrane by StAR (steroidogenic acute regulatory protein). However, the mechanism by which StAR binds to cholesterol and its importance in cholesterol transport are under debate. According to our proposed molecular model, StAR possesses a hydrophobic cavity, which can accommodate one cholesterol molecule. In the bound form, cholesterol interacts with hydrophobic side-chains located in the C-terminal alpha-helix 4, thereby favouring the folding of this helix. To verify this model experimentally, we have characterized the in vitro activity, overall structure, thermodynamic stability and cholesterol-binding affinity of StAR lacking the N-terminal 62 amino acid residues (termed N-62 StAR). This mature form is biologically active and has a well-defined tertiary structure. Addition of cholesterol to N-62 StAR led to an increase in the alpha-helical content and T degrees (melting temperature), indicating the formation of a stable complex. However, the mutation F267Q, which is located in the C-terminal helix interface lining the cholesterol-binding site, reduced the biological activity of StAR. Furthermore, the cholesterol-induced thermodynamic stability and the binding capacity of StAR were significantly diminished in the F267Q mutant. Titration of StAR with cholesterol yielded a 1:1 complex with an apparent K(D) of 3 x 10(-8). These results support our model and indicate that StAR can readily bind to cholesterol with an apparent affinity that commensurates with monomeric cholesterol solubility in water. The proper function of the C-terminal alpha-helix is essential for the binding process.
Collagen type IV (CnIV) and fibronectin (Fn) were used as ligands to study the distribution of alpha(2)beta(1) and alpha(4)beta(1) integrins in low-density, detergent-resistant microdomains (DRM) of Jurkat lymphocytes. CnIV-coated microspheres induced (optical trapping) the redistribution of GM(1)-associated fluorescence from the cell periphery to the area of contact. This was not observed in cells treated with beta-methyl cyclodextrin (MCD). Fn- or bovine serum albumin-coated microspheres did not modify the peripheral distribution of fluorescence. These observations were confirmed by confocal microscopy. Western blot analysis of cells exposed to surfaces coated with CnIV revealed that the alpha(2)-subunit was initially present at low levels in DRM, became strongly associated after 40 min, and returned to basal levels after 75 min. Fn induced a slight recruitment of the beta(1)-integrin alpha(4)-subunit in DRM after 5 and 10 min, followed by a return to basal levels. Neither CnIV nor Fn triggered significant changes in the distribution of the beta(1)-subunit in DRM. Fn- and CnIV-coated microspheres or surfaces coated with these ligands triggered a MCD-sensitive mobilization of Ca(2)(+). MCD did not alter the state of the Ca(2)(+) reserves. The differential distributions of the alpha(2)beta(1) and alpha(4)beta(1) integrins in DRM may provide one additional step in the regulation of outside-in signaling involving these integrins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.