We establish some optimal a priori error estimate on some variants of the eXtended Finite Element Method (Xfem), namely the Xfem with a cut-off function and the standard Xfem with a fixed enrichment area. The results are established for the Lamé system (homogeneous isotropic elasticity) and the Laplace problem. The convergence of the numerical stress intensity factors is also investigated. We show some numerical experiments which corroborate the theoretical results.
The aim of this Note is to give a convergence result for a variant of the eXtended Finite Element Method (XFEM) on cracked domains using a cut-off function to localize the singular enrichment area. The difficulty is caused by the discontinuity of the displacement field across the crack, but we prove that a quasi-optimal convergence rate holds in spite of the presence of elements cut by the crack. The global linear convergence rate is obtained by using an enriched linear finite element method. To cite this article: E. Chahine et al., C. R. Acad. Sci. Paris, Ser. I 342 (2006). 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.
RésuméRésultat de convergence quasi-optimal en mécanique de la rupture avec XFEM. Le but de cette Note est de donner un résul-tat de convergence pour une variante de la méthode XFEM (eXtended Finite Element Method) sur un domaine fissuré en utilisant une fonction cut-off pour localiser l'enrichissement par les fonctions singulières. La difficulté est causée par la discontinuité du champ de déplacement à travers la fissure, mais on montre une convergence quasi-optimale malgré la présence d'éléments coupés par la fissure. Le résultat de convergence globale linéaire est obtenu en utilisant une méthode d'éléments finis affines enrichis. Pour citer cet article : E. Chahine et al., C. R. Acad. Sci. Paris, Ser. I 342 (2006).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.