SUMMARY ATP-binding cassette (ABC) systems are universally distributed among living organisms and function in many different aspects of bacterial physiology. ABC transporters are best known for their role in the import of essential nutrients and the export of toxic molecules, but they can also mediate the transport of many other physiological substrates. In a classical transport reaction, two highly conserved ATP-binding domains or subunits couple the binding/hydrolysis of ATP to the translocation of particular substrates across the membrane, through interactions with membrane-spanning domains of the transporter. Variations on this basic theme involve soluble ABC ATP-binding proteins that couple ATP hydrolysis to nontransport processes, such as DNA repair and gene expression regulation. Insights into the structure, function, and mechanism of action of bacterial ABC proteins are reported, based on phylogenetic comparisons as well as classic biochemical and genetic approaches. The availability of an increasing number of high-resolution structures has provided a valuable framework for interpretation of recent studies, and realistic models have been proposed to explain how these fascinating molecular machines use complex dynamic processes to fulfill their numerous biological functions. These advances are also important for elucidating the mechanism of action of eukaryotic ABC proteins, because functional defects in many of them are responsible for severe human inherited diseases.
The ABC superfamily comprises both membrane-bound transporters and soluble proteins involved in a broad range of processes, many of which are of considerable agricultural, biotechnological and medical potential. Completion of the Arabidopsis and rice genome sequences has revealed a particularly large and diverse complement of plant ABC proteins in comparison with other organisms. Forward and reverse genetics, together with heterologous expression, have uncovered many novel roles for plant ABC proteins, but this progress has been accompanied by a confusing proliferation of names for plant ABC genes and their products. A consolidated nomenclature will provide much-needed clarity and a framework for future research.
Photorhabdus luminescens is an enterobacterium that is symbiotic with soil entomopathogenic nematodes and pathogenic to a wide range of insects. P. luminescens promotes its own transmission among susceptible insect populations using its nematode host as vector 1 . Its life cycle comprises a symbiotic stage in the nematode's gut and a virulent stage in the insect larvae, which it kills through toxemia and septicemia. After the nematode attacks a prey insect and P. luminescens is released, the bacterium produces a wide variety of virulence factors ensuring rapid insect killing. Bioconversion of the insect cadaver by exoenzymes produced by the bacteria allows the bacteria to multiply and the nematode to reproduce. During this process P. luminescens produces antibiotics to prevent invasion of the insect cadaver by bacterial or fungal competitors. Finally, elimination of competitors allows P. luminescens and the nematode to reassociate specifically before leaving the insect cadaver 2,3 .To better understand this complex life style, we determined the genome sequence of P. luminescens subspecies laumondii strain TT01 4 , a symbiont of the nematode Heterorhabditis bacteriophora isolated on Trinidad and Tobago. RESULTS General featuresStrain TT01 possesses a single circular chromosome of 5,688,987 bp with an average GC content of 42.8%. No plasmid replicon was found.A total of 4,839 protein-coding genes, including 157 pseudogenes, seven complete sets (23S, 5S and 16S) of ribosomal RNA operons and 85 tRNA genes, were predicted ( Fig. 1; Supplementary Table 1 online). Toxins against insectsMore toxin genes were predicted in the P. luminescens genome than in any other bacterial genome sequenced yet. A large number of these toxins may be involved in the killing of a wide variety of insects. Some may act synergistically or use redundancy for 'overkill' 5 , ensuring a quick death of the host. In addition, some may kill insects by interfering with their development. In the TT01 genome, two paralogs, plu4092 and plu4436, encode proteins similar to juvenile hormone esterases (JHEs) of the insect Leptinotarsa decemlineata 6 . Juvenile hormone maintains the insect in a larval state. Its inactivation by JHE allows metamorphosis to proceed. JHEs may be used to trigger the insect endocrine machinery at an inappropriate time and thus represents a promising approach for insect control 7 . These genes are located downstream of highly related orphan genes (plu4093 and plu4437), suggesting a locus duplication.The toxicity of the proteins encoded by these two loci was verified experimentally. Two Escherichia coli clones, containing the recombinant BAC1A02 and BAC8C11, were shown to be toxic toward insects. BAC1A02, which contains the locus plu4093-plu4092, exhibited substantial oral toxicity toward three mosquito species, Aedes aegypti,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.