In this paper we generate gaits for two types of underactuated mechanical systems: principally kinematic and purely mechanical systems. Our goal is to specify inputs in the form of gaits, that is, a sequence of controlled shape changes of a multi-bodied mechanical system that when executed would produce a desired change in the unactuated position or orientation variables of the entire mechanical system. In other words, we want to indirectly control the unactuated degrees of freedom of the mechanical system utilizing a controlled "internal" shape change. More precisely, in this paper we develop a gait evaluation tool which easily measures the change of position, computed in a body-attached coordinate frame, due to any closed curve in the shape space. This evaluation tool is simple enough that we can use it to generate gaits or to design curves that move the mechanical system along a desired direction. Finally, we verify that this gait analysis technique applies to two seemingly different classes of mechanical systems, purely mechanical and principally kinematic systems, and unify the gait generation problem for both classes.
Extensive research in the field of monocular SLAM for the past fifteen years has yielded workable systems that found their way into various applications in robotics and augmented reality. Although filter-based monocular SLAM systems were common at some time, the more efficient keyframe-based solutions are becoming the de facto methodology for building a monocular SLAM system. The objective of this paper is threefold: first, the paper serves as a guideline for people seeking to design their own monocular SLAM according to specific environmental constraints. Second, it presents a survey that covers the various keyframebased monocular SLAM systems in the literature, detailing the components of their implementation, and critically assessing the specific strategies made in each proposed solution. Third, the paper provides insight into the direction of future research in this field, to address the major limitations still facing monocular SLAM; namely, in the issues of illumination changes, initialization, highly dynamic motion, poorly textured scenes, repetitive textures, map maintenance, and failure recovery.
In this paper, we generalize our prior results in motion analysis to design gaits for a more general family of underactuated mechanical systems. In particular, we analyze and generate gaits for mixed mechanical systems which are systems whose motion is simultaneously governed by both a set of non-holonomic velocity constraints and a notion of a generalized momentum being instantaneously conserved along allowable directions of motion. Through proper recourse to geometric mechanics, we are able to show that the resulting motion from a gait has two portions: a geometric and a dynamic contribution. The main challenge in motion planning for a mixed system is understanding how to separate the geometric and dynamic contributions of motion due to a general gait, thus simplifying gait analysis. In this paper, we take the first step towards addressing this challenge in a generalized framework. Finally, we verify the generality of our approach by applying our techniques to novel mechanical systems which we introduce in this paper as well as by verifying that seemingly different prior motion planning results could actually be explained using the gait analysis presented in this paper.
Small robots have the potential to access confined spaces where humans cannot go. However, the mobility of wheeled and tracked systems is severely limited in cluttered environments. Snake robots using biologically inspired gaits for locomotion can provide better access in many situations, but are slow and can easily snag. This paper introduces an alternative approach to snake robot locomotion, in which the entire surface of the robot provides continuous propulsive force to significantly improve speed and mobility in many environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.