Glycosylation is an important post-translational modification, giving rise to a diverse and abundant repertoire of glycans on the cell surface, collectively known as the glycome. When focusing on immunity, glycans are indispensable in virtually all signaling and cell-cell interactions. More specifically, glycans have been shown to regulate key pathophysiological steps within T cell biology such as T cell development, thymocyte selection, T cell activity and signaling as well as T cell differentiation and proliferation. They are of major importance in determining the interaction of human T cells with tumor cells. In this review, we will describe the role of glycosylation of human T cells in more depth, elaborate on the importance of glycosylation in the interaction of human T cells with tumor cells and discuss the potential of cancer immunotherapies that are based on manipulating the glycome functions at the tumor immune interface.
In the past decade, chimeric antigen receptor (CAR) T cell technology has revolutionized cancer immunotherapy. This strategy uses synthetic CARs to redirect the patient’s own immune cells to recognize specific antigens expressed on the surface of tumor cells. The unprecedented success of anti-CD19 CAR T cell therapy against B cell malignancies has resulted in its approval by the US Food and Drug Administration (FDA) in 2017. However, major scientific challenges still remain to be addressed for the broad use of CAR T cell therapy. These include severe toxicities, limited efficacy against solid tumors, and immune suppression in the hostile tumor microenvironment. Furthermore, CAR T cell therapy is a personalized medicine of which the production is time- and resource-intensive, which makes it very expensive. All these factors drive new innovations to engineer more powerful CAR T cells with improved antitumor activity, which are reviewed in this manuscript.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.