Our study investigates the biochemical and functional impact of selective histone deacetylase 6 (HDAC6) inhibitors, a promising class of novel therapeutics, in several cancer models. Selective HDAC6 inhibitors (Tubathian A, Tubastatin A, Tubacin and Ricolinostat) and a non‐selective HDAC inhibitor (Vorinostat) were evaluated on cancer cell lines derived from multiple tumour types in both an in vitro and in vivo setting as potential cancer therapeutics. Selective HDAC6 inhibitors resulted in α‐tubulin acetylation with no impact on histone acetylation but failed to show any anti‐cancer properties. Only the use of high concentrations of selective HDAC6 inhibitors resulted in co‐inhibition of other HDAC enzymes and consequently in reduced growth, migratory and/or invasive activity of cancer cells in vitro as well as in vivo. The specificity of HDAC6 inhibition was confirmed using a CRISPR/Cas9 knockout cell line. Our results suggest that selective HDAC6 inhibitors may fall short as potential single agent anti‐cancer drugs and prove that many previous data regarding this promising class of compounds need to be interpreted with great care due to their use in high concentrations resulting in low selectivity and potential off‐target effects.
Swine influenza A viruses (swIAVs) with a truncated NS1del126 protein were strongly attenuated in previous laboratory-based safety studies and therefore approved for use as LAIVs for swine in the United States. In the field, however, the LAIV strains were detected in diagnostic samples and could regain a wild-type NS1 via reassortment with endemic swIAVs.
Surveillance of swine influenza A viruses (swIAV) allows timely detection and identification of new variants with potential zoonotic risks. In this study, we aimed to identify swIAV subtypes that circulated in pigs in Belgium and the Netherlands between 2014 and 2019, and characterize their genetic and antigenic evolution. We subtyped all isolates and analyzed hemagglutinin sequences and hemagglutination inhibition assay data for H1 swIAV, which were the dominant HA subtype. We also analyzed whole genome sequences (WGS) of selected isolates. Out of 200 samples, 89 tested positive for swIAV. swIAV of H1N1, H1N2 and H3N2 subtypes were detected. Analysis of WGS of 18 H1 swIAV isolates revealed three newly emerged genotypes. The European avian-like H1 swIAV (lineage 1C) were predominant and accounted for 47.2% of the total isolates. They were shown to evolve faster than the European human-like H1 (1B lineage) swIAV, which represented 27% of the isolates. The 2009 pandemic H1 swIAV (lineage 1A) accounted for only 5.6% of the isolates and showed divergence from their precursor virus. These results point to the increasing divergence of swIAV and stress the need for continuous surveillance of swIAV.
We report a zoonotic infection of a pig farmer in the Netherlands with a Eurasian avian-like swine influenza A(H1N1) virus that was also detected in the farmed pigs. Both viruses were antigenically and genetically characterized. Continued surveillance of swine influenza A viruses is needed for risk assessment in humans and swine.
In a previous study in influenza-naïve pigs, heterologous prime-boost vaccination with monovalent, adjuvanted whole inactivated vaccines (WIV) based on the European swine influenza A virus (SwIAV) strain, A/swine/Gent/172/2008 (G08), followed by the US SwIAV strain, A/swine/Pennsylvania/A01076777/2010 (PA10), was shown to induce broadly cross-reactive hemagglutination inhibition (HI) antibodies against 12 out of 15 antigenically distinct H3N2 influenza strains. Here, we used the pig model to examine the efficacy of that particular heterologous prime-boost vaccination regimen, in individuals with pre-existing infection-immunity. Pigs were first inoculated intranasally with the human H3N2 strain, A/Nanchang/933/1995. Seven weeks later, they were vaccinated intramuscularly with G08 followed by PA10 or vice versa. We examined serum antibody responses against the hemagglutinin and neuraminidase, and antibody-secreting cell (ASC) responses in peripheral blood, draining lymph nodes, and nasal mucosa (NMC), in ELISPOT assays. Vaccination induced up to 10-fold higher HI antibody titers than in naïve pigs, with broader cross-reactivity, and protection against challenge with an antigenically distant H3N2 strain. It also boosted ASC responses in lymph nodes and NMC. Our results show that intramuscular administration of WIV can lead to enhanced antibody responses and cross-reactivity in pre-immune subjects, and recall of ASC responses in lymph nodes and NMC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.