Pulmonary tuberculosis (PTB) is associated with chronic inflammation and anemia. How anemia impacts systemic inflammation in PTB patients undergoing antitubercular therapy (ATT) is not fully understood. In the present study, data on several blood biochemical parameters were retrospectively analyzed from 118 PTB patients during the first 60 days of ATT. Multidimensional statistical analyses were employed to perform detailed inflammatory profiling of patients stratified by anemia status prior to treatment. Anemia was defined as hemoglobin levels <12.5 g/dL for female and <13.5 g/dL for male individuals. The findings revealed that most of anemia cases were likely caused by chronic inflammation. A distinct biosignature related to anemia was detected, defined by increased values of uric acid, C-reactive protein, and erythrocyte sedimentation rate. Importantly, anemic patients sustained increased levels of several biochemical markers at day 60 of therapy. Preliminary analysis failed to demonstrate association between persistent inflammation during ATT with frequency of positive sputum cultures at day 60. Thus, TB patients with anemia exhibit a distinct inflammatory profile, which is only partially reverted at day 60 of ATT.
BackgroundClinical trials that evaluate new anti-tubercular drugs and treatment regimens take years to complete due to the slow clearance of Mycobacterium tuberculosis infection and the lack of early biomarkers that predict treatment outcomes. Host Inflammation markers have been associated with tuberculosis (TB) pathogenesis. In the present study, we tested if circulating levels of C-reactive protein (CRP) and ferritin reflect mycobacterial loads and inflammation in pulmonary TB (PTB) patients undergoing anti-tuberculous therapy (ATT).MethodsProspective measurements of CRP and ferritin, used as readouts of systemic inflammation, were performed in cryopreserved serum samples from 165 Brazilian patients with active PTB initiating ATT. Associations between levels of these laboratory parameters with mycobacterial loads in sputum as well as with sputum conversion at day 60 of ATT were tested.ResultsCirculating levels of both ferritin and CRP gradually decreased over time on ATT. At pre-treatment, concentrations of these parameters were unable to distinguish patients with positive from those with negative acid-fast bacilli (AFB) in sputum cultures. However, patients who remained with positive cultures at day 60 of ATT exhibited heightened levels of these inflammatory markers compared to those with negative cultures at that time point.ConclusionsCRP and Ferritin levels in serum may be useful to identify patients with positive cultures at day 60 of ATT.
Although many studies have assessed factors affecting culture conversion during tuberculosis treatment, few have looked into the effect of tobacco smoking. This study included 89 active pulmonary tuberculosis patients with positive sputum culture upon presentation and collected information regarding smoking history and culture conversion after 60 days of therapy. Current smokers had a higher risk (OR 5.6; 95%CI 1.7-18.7) of non-conversion after two months of therapy when compared to never and ex-smokers. Cavities on chest X-ray and alcohol abuse were shown to confound this association. After adjustment for cavities on the chest X-ray and alcohol abuse current smoking compared to current non-smoking remained significantly associated with culture non-conversion at 60 days of treatment (adjusted OR 6.9; 95%CI 1.8-26.7, p = 0.002) with a significant (p = 0.004) trend in adjusted OR with the number of cigarettes smoked daily to 11.6 (1.8-73.4) among those smoking more than 20 cigarettes per day. In conclusion tobacco smoking was found to delay culture conversion during treatment for pulmonary tuberculosis in a dose-dependent manner. More research is needed to elucidate the effects of smoking on tuberculosis treatment response, and of smoking cessation during tuberculosis treatment.
Background: Mycobacterium tuberculosis infection is known to cause inflammation and lung tissue damage in high-risk populations. Nevertheless, direct associations between mycobacterial loads, systemic inflammation and pulmonary lesions upon treatment initiation have not been fully characterized. In the present exploratory study, we prospectively depict the immune profile, microbial clearance and evolution of radiographic lesions in a pulmonary tuberculosis (PTB) patient cohort before and 60 days after anti-tuberculous treatment (ATT) initiation. Methods: Circulating levels of cytokines (IL-2, IL-4, IL-6, IL-10, IFN-γ, TNF-α) and C-reactive protein (CRP), as well as values of erythrocyte sedimentation rate (ESR) were measured in cryopreserved serum samples obtained from 73 PTB patients at pre-ATT and day 60 of treatment. Changes of the immune profile over time were compared with mycobacterial loads in sputum and culture conversion at day 60 of ATT. Additional analyses tested associations between improvement of chest radiographic lesions at day 60 and pre-treatment status of inflammation and mycobacterial loads.
Background: Pulmonary tuberculosis (PTB) can lead to lung tissue damage (LTD) and compromise the pulmonary capacity of TB patients that evolve to severe PTB. The molecular mechanisms involved in LTD during anti-tuberculous treatment (ATT) remain poorly understood.Methods and findings: We evaluated the role of neutrophil extracellular trap (NET) and the occurrence of LTD through chest radiographic images, the microbial load in sputum, and inflammatory serum profile (IL-12p40/p70, IL-8, IL-17A, IL-23, VEGF-A, MMP-1, and -8, galectin-3, citrunillated histone H3—cit-H3, alpha-1-antitrypsin—α1AT, C-reactive protein—CRP and albumin) in a cohort of 82 PTB patients before and after 60 days of ATT. Using univariate analysis, LTD was associated with neutrophilia and increase of several inflammatory proteins involved in the neutrophil-mediated response, being cit-H3 the more related to the event. In the multivariate analysis, neutrophilia and cit-H3 appear as directly related to LTD. The analysis of the ROC curve at day 60 presented AUC of 0.97 (95.0% CI 0.95–1). Interestingly, at day 0 of ATT, these biomarkers demonstrated fine relation with LTD showing an AUC 0.92 (95.0% CI 0.86–0.99). Despite of that, the same molecules have no impact in culture conversion during ATT.Conclusions: Our data revealed that NETs may play a key role in the pathway responsible for non-specific inflammation and tissue destruction in PTB. High level of cit-H3 and low level of α1AT was observed in the serum of severe TB patients, suggesting a breakdown in the intrinsic control of NET-driven tissue damage. These data show a new insight to knowledge TB immunopathogenesis, the role of neutrophil and NET pathway. Likewise, we identified possible biomarkers to screening of PTB patients eligible to adjuvants therapies, as anti-inflammatories and alpha-1-antitrypsin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.