Previous studies have shown that the vascular reactivity of the mouse aorta differs substantially from that of the rat aorta in response to several agonists such as angiotensin II, endothelin-1 and isoproterenol. However, no information is available about the agonists bradykinin (BK) and DesArg 9 BK (DBK). Our aim was to determine the potential expression of kinin B 1 and B 2 receptors in the abdominal mouse aorta isolated from C57BL/6 mice. Contraction and relaxation responses to BK and DBK were investigated using isometric recordings. The kinins were unable to induce relaxation but concentrationcontraction response curves were obtained by applying increasing concentrations of the agonists BK and DBK. These effects were blocked by the antagonists Icatibant and R-715, respectively. The potency (pD 2 ) calculated from the curves was 7.0 ± 0.1 for BK and 7.3 ± 0.2 for DBK. The efficacy was 51 ± 2% for BK and 30 ± 1% for DBK when compared to 1 µM norepinephrine. The concentration-dependent responses of BK and DBK were markedly inhibited by the arachidonic acid inhibitor indomethacin (1 µM), suggesting a mediation by the cyclooxygenase pathway. These contractile responses were not potentiated in the presence of the NOS inhibitor L-NAME (1 mM) or endothelium-denuded aorta, indicating that the NO pathway is not involved. We conclude that the mouse aorta constitutively contains B 1 and B 2 subtypes of kinin receptors and that stimulation with BK and DBK induces contractile effect mediated by endothelium-independent vasoconstrictor prostanoids.
Bradykinin (BK) and des-Arg(9)-bradykinin (DBK) of kallikrein-kinin system exert its effects mediated by the B2 (B2R) and B1 (B1R) receptors, respectively. It was already shown that the deletion of kinin B1R or of B2R induces upregulation of the remaining receptor subtype. However studies on overexpression of B1R or B2R in transgenic animals have supported the importance of the overexpressed receptor but the expression of another receptor subtype has not been determined. Previous study described a marked vasodilatation and increased susceptibility to endotoxic shock which was associated with increased mortality in response to DBK in thoracic aorta from transgenic rat overexpressing the kinin B1R (TGR(Tie2B1)) exclusively in the endothelium. In another study, mice overexpressing B1R in multiple tissues were shown to present high susceptibility to inflammation and to lipopolysaccharide-induced endotoxic shock. Therefore the role of B2R was investigated in the thoracic aorta isolated from TGR(Tie2B1) rats overexpressing the B1R exclusively in the vascular endothelium. Our findings provided evidence for highly increased expression level of the B2R in the transgenic rats. It was reported that under endotoxic shock, these rats exhibited exaggerated hypotension, bradycardia and mortality. It can be suggested that the high mortality during the pathogenesis of endotoxic shock provoked in the transgenic TGR(Tie2B1) rats could be due to the enhanced expression of B2R associated with the overexpression of the B1R.
Previous studies have shown that the vascular reactivity of the mouse aorta differs substantially from that of the rat aorta in response to several agonists such as angiotensin II, endothelin-1 and isoproterenol. However, no information is available about the agonists bradykinin (BK) and DesArg 9 BK (DBK). Our aim was to determine the potential expression of kinin B 1 and B 2 receptors in the abdominal mouse aorta isolated from C57BL/6 mice. Contraction and relaxation responses to BK and DBK were investigated using isometric recordings. The kinins were unable to induce relaxation but concentrationcontraction response curves were obtained by applying increasing concentrations of the agonists BK and DBK. These effects were blocked by the antagonists Icatibant and R-715, respectively. The potency (pD 2 ) calculated from the curves was 7.0 ± 0.1 for BK and 7.3 ± 0.2 for DBK. The efficacy was 51 ± 2% for BK and 30 ± 1% for DBK when compared to 1 µM norepinephrine. The concentration-dependent responses of BK and DBK were markedly inhibited by the arachidonic acid inhibitor indomethacin (1 µM), suggesting a mediation by the cyclooxygenase pathway. These contractile responses were not potentiated in the presence of the NOS inhibitor L-NAME (1 mM) or endothelium-denuded aorta, indicating that the NO pathway is not involved. We conclude that the mouse aorta constitutively contains B 1 and B 2 subtypes of kinin receptors and that stimulation with BK and DBK induces contractile effect mediated by endothelium-independent vasoconstrictor prostanoids.
Bradykinin (BK) is a vasorelaxant, algesic and inflammatory agent. Angiotensin II (AngII) is known to control vascular tone and promote growth, inflammation and artherogenesis. There is evidence for cross talking between BK and AngII receptors. Therefore, the effect of lack of kinin receptors was assessed in mice with genetic disruption of B(1) or B(2) and both receptors. Responsiveness of abdominal aortic rings to BK and AngII as well as the receptor gene expression of both peptides were analysed. Although no specific phenotype was displayed in the normotensive and healthy mice lacking the kinin receptors, a decreased expression level of the remaining kinin receptor mRNA was observed. AT(1) receptor mRNA level was also reduced, indicating that kinin receptors regulate AngII receptors. Downregulation of the receptors was well correlated with reduction in the reactivity of both agonists to induce contraction of aortic rings, but other signal regulations must be sought in these transgenic mice. We conclude that cross talk between kinin and AngII receptors occurs in mouse abdominal aorta and that both peptides may regulate the initiation and progression of important pathophysiological processes, such as hypertension and inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.