Three-dimensional flows of an inviscid incompressible fluid and an inviscid subsonic compressible gas are considered and it is demonstrated how the WKB method can be used for investigating their stability. The evolution of rapidly oscillating initial data is considered and it is shown that in both cases the corresponding flows are unstable if the transport equations associated with the wave which is advected by the flow have unbounded solutions. Analyzing the corresponding transport equations, a number of classical stability conditions are rederived and some new ones are obtained. In particular, it is demonstrated that steady flows of an incompressible fluid and an inviscid subsonic compressible gas are unstable if they have points of stagnation.
In a rotating equilibrium state, the velocity and magnetic fields are shown to share the same flux surfaces. A simplified derivation is given of a second-order (not necessarily elliptic) partial differential equation which determines axisymmetric equilibrium states. For general configurations, equations on flux surfaces which determine the Alfvén and cusp continuous spectrum are derived and the stability investigated. These equations are written without the use of any particular coordinate system. Similar equations yield a sufficient condition for global stability of axisymmetric equilibria if the flow is parallel to the magnetic field up to a rigid rotation of the plasma. This condition is also necessary for stability in a mirror configuration with no toroidal field and a pure rigid rotation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.