The implantation process involves complex and synchronized molecular and cellular events between the uterus and the implanting embryo. These events are regulated by paracrine and autocrine factors. Trophoblast invasion and migration through the uterine wall is mediated by molecular and cellular interactions, controlled by the trophoblast and the maternal microenvironment. This review is focused on the molecular constituents of the human trophoblast, their actions and interactions, including interrelations with the uterine endometrium.
The role of the matrix metalloproteinases (MMPs) in the decidua, fetal membranes and amniotic fluid (AF) has been receiving more and more attention. The MMPs are not only important intermediaries in pathological processes leading to preterm labor but it seems that they also play a crucial role in the activation of labor at term. During normal gestation MMP-1, -2, -3, -7 and -9 are found in the amniotic fluid and fetal membranes. MMP-2 and MMP-3 are expressed constitutively while MMP-9 is barely detectable until labor. At labor, while MMP-9 is the major MMP responsible for gelatinolytic activity in the membranes, MMP-2 is dominant in the decidua. MMP-7 (AF) increases with gestation but does not appear to play a major role in labor. The expression of MMPs is attenuated through the expression of relaxins, integrins and extracellular matrix metalloproteinase inducer (EMMPRIN). Spontaneous preterm delivery (PTD) may be a product of preterm labor (PTL), preterm premature rupture of membranes (P-PROM) or placental abruption. Each of these processes may have differing pathways but the presence of an intrinsic inflammatory response with or without infection seems to involve all etiologies. The inflammatory response is mediated with cytokines such as interleukins -1, -6 and -8 and tumor necrosis factor alpha. MMP-3, MMP-7 and MMP-8 appear to be important in these processes. MMP-9, which is the major MMP involved in normal labor, plays an important role in pathological labor as well. Finally, apoptosis seems to play a role in pathological labor, particularly deliveries involving P-PROM. African-American are at greater risk of PTD than white or Hispanic Americans. Environmental differences may not suffice to explain this phenomenon. Genetic polymorphisms of the MMP genes may help explain the greater risk among this population. Finally, manipulating MMPs may have a role in the prevention of PTD. Agents suggested include indomethacin, N-acetylcysteine, progesterone and specific inhibitors of phosphodiesterase 4.
Background: The aim of this study was to examine the invasiveness of first trimester trophoblasts according to the secretion profile of MMP-2 and -9 at different gestational stages, and to test the similarity between primary trophoblast cell-culture and the JAR choriocarcinoma cell-line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.