Abstract-We present a parametric equivalent circuit model for a circular CMUT in collapsed mode. First, we calculate the collapsed membrane deflection, utilizing the exact electrical force distribution in the analytical formulation of membrane deflection. Then we develop a lumped element model of collapsed membrane operation. The radiation impedance for collapsed mode is also included in the model. The model is merged with the uncollapsed mode model to obtain a simulation tool that handles all CMUT behavior, in transmit or receive. Large-and small-signal operation of a single CMUT can be fully simulated for any excitation regime. The results are in good agreement with FEM simulations.
Abstract-This study focuses on modeling collapsed mode operation of CMUT arrays, and obtaining a small signal lumped element model for collapsed mode operation. Having the large signal model for single CMUT from previous studies, the mutual radiation impedance is presented for the collapsed mode, and a large signal model for a CMUT array is obtained for simulating the operation in both uncollapsed and collapsed modes. For faster computation, a small signal model for a CMUT cell is derived by linearizing the collapsed mode operation at a given bias point, and the computation time is reduced significantly. Using this model we are able to simulate a large array of collapsed CMUT cells.
Abstract-In this study, an equivalent electrical circuit model for a single circular CMUT in both uncollapsed and collapsed modes is obtained. In order to model the collapsed mode mechanics, the governing differential equation is solved semi-analytically for a large number of normalized cases. Then the calculations are adapted to the equivalent electrical circuit model. The model uses the self radiation impedance of both uncollapsed and collapsed modes. The model is fully parametric in such a way that a CMUT cell of given dimensions and parameters can be simulated under an arbitrary large signal excitation. Transient simulations can be performed in less than a minute with a circuit simulator. Transient and frequency domain simulations are consistent with finite element analysis results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.