Background
The aim of this study was to evaluate the success of the artificial intelligence (AI) system in implant planning using three-dimensional cone-beam computed tomography (CBCT) images.
Methods
Seventy-five CBCT images were included in this study. In these images, bone height and thickness in 508 regions where implants were required were measured by a human observer with manual assessment method using InvivoDental 6.0 (Anatomage Inc. San Jose, CA, USA). Also, canals/sinuses/fossae associated with alveolar bones and missing tooth regions were detected. Following, all evaluations were repeated using the deep convolutional neural network (Diagnocat, Inc., San Francisco, USA) The jaws were separated as mandible/maxilla and each jaw was grouped as anterior/premolar/molar teeth region. The data obtained from manual assessment and AI methods were compared using Bland–Altman analysis and Wilcoxon signed rank test.
Results
In the bone height measurements, there were no statistically significant differences between AI and manual measurements in the premolar region of mandible and the premolar and molar regions of the maxilla (p > 0.05). In the bone thickness measurements, there were statistically significant differences between AI and manual measurements in all regions of maxilla and mandible (p < 0.001). Also, the percentage of right detection was 72.2% for canals, 66.4% for sinuses/fossae and 95.3% for missing tooth regions.
Conclusions
Development of AI systems and their using in future for implant planning will both facilitate the work of physicians and will be a support mechanism in implantology practice to physicians.
Objective: This study evaluated the use of a deep-learning approach for automated detection and numbering of deciduous teeth in children as depicted on panoramic radiographs. Methods and materials: An artificial intelligence (AI) algorithm (CranioCatch, Eskisehir-Turkey) using Faster R-CNN Inception v2 (COCO) models were developed to automatically detect and number deciduous teeth as seen on pediatric panoramic radiographs. The algorithm was trained and tested on a total of 421 panoramic images. System performance was assessed using a confusion matrix. Results: The AI system was successful in detecting and numbering the deciduous teeth of children as depicted on panoramic radiographs. The sensitivity and precision rates were high. The estimated sensitivity, precision, and F1 score were 0.9804, 0.9571, and 0.9686, respectively. Conclusion: Deep-learning-based AI models are a promising tool for the automated charting of panoramic dental radiographs from children. In addition to serving as a time-saving measure and an aid to clinicians, AI plays a valuable role in forensic identification.
Background
Panoramic radiography is an imaging method for displaying maxillary and mandibular teeth together with their supporting structures. Panoramic radiography is frequently used in dental imaging due to its relatively low radiation dose, short imaging time, and low burden to the patient. We verified the diagnostic performance of an artificial intelligence (AI) system based on a deep convolutional neural network method to detect and number teeth on panoramic radiographs.
Methods
The data set included 2482 anonymized panoramic radiographs from adults from the archive of Eskisehir Osmangazi University, Faculty of Dentistry, Department of Oral and Maxillofacial Radiology. A Faster R-CNN Inception v2 model was used to develop an AI algorithm (CranioCatch, Eskisehir, Turkey) to automatically detect and number teeth on panoramic radiographs. Human observation and AI methods were compared on a test data set consisting of 249 panoramic radiographs. True positive, false positive, and false negative rates were calculated for each quadrant of the jaws. The sensitivity, precision, and F-measure values were estimated using a confusion matrix.
Results
The total numbers of true positive, false positive, and false negative results were 6940, 250, and 320 for all quadrants, respectively. Consequently, the estimated sensitivity, precision, and F-measure were 0.9559, 0.9652, and 0.9606, respectively.
Conclusions
The deep convolutional neural network system was successful in detecting and numbering teeth. Clinicians can use AI systems to detect and number teeth on panoramic radiographs, which may eventually replace evaluation by human observers and support decision making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.