Novel approaches to the dynamic analysis of the reinforced soil walls have been reported in the literature. Use of marginal soils reduces the cost of geosynthetic reinforced soil walls if proper drainage measures are taken. Therefore the affect of using cohesive marginal soils as backfill in geosynthetic reinforced retaining structures were investigated in this research. The dynamic response of reinforced soil walls was investigated in a similar focus, using finite element analysis. The results obtained from walls with cohesive backfill were compared to the results obtained from walls with granular backfill. The height of the wall was chosen as 6 m in the two-dimensional plane strain finite element model and the base acceleration was chosen to be a harmonic motion. The effects of various parameters like the backfill type, facing type, reinforcement stiffness, and peak ground acceleration on the cyclic response of reinforced soil retaining walls were investigated. After analyzing the wall response for end of construction and dynamic excitation phases, it was determined that the deformations and reinforcement tensile loads increased during the cyclic load application and that the amount of additional deformation that occurred during cyclic load application was strongly related to backfill soil type, facing type, reinforcement type and peak ground acceleration. It was determined that a cohesive backfill and geotextile reinforcement was a good combination to reduce the deformations of geosynthetic reinforced walls during cyclic loading for medium height walls.
In this study, the performance of the first reinforcement layer depth for sand subbase of a road or construction was investigated with plate load laboratory tests. Unreinforced and reinforced experiments for different reinforcement types were made by changing the first reinforcement layer depth ratio. One type of geotextile and two different geogrid specimens were used in the research. Load-settlement curves and Bearing Ratios were studied by measuring the results for different settlement ratios. Finally, laboratory measurements of unreinforced and reinforced soil using geotextile reinforcement were compared with Finite Element Model (FEM) analyses modeled under similar conditions. The results demonstrated the effects of different types of reinforcements for different first reinforcement layer locations. The number of reinforcement layers was another parameter which affected the bearing ratio along with the first reinforcement layer depths. It was also observed that the Bearing Ratio (BR) and load-settlement behavior changed significantly with the first reinforcement depth and settlements. Effects on failure modes for unreinforced and reinforced sand soils were compared for each test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.