PURPOSEBeverages may affect the translucency of esthetic dental restorative materials. The aim of the present study was to investigate the effects of coffee and red wine on the translucency of a PICN material with two translucency levels, and finished with different methods.MATERIALS AND METHODS2M2 high translucent and translucent VITA Enamic hybrid ceramic blocks were investigated. Rectangular specimens with the dimensions of 12 mm × 14 mm × 2 mm were prepared. The specimens were finished and polished with different methods as suggested by the manufacturer. The translucency parameters of the specimens were evaluated before and after 24 hours, 7 days, and 28 days immersion in distilled water, coffee and red wine. Translucency parameters were measured using a portable spectrophotometer.RESULTSAt the end of 28 days, there was no statistically significant difference between the groups of specimens kept in coffee (P>.05). In the red wine groups, there was a statistically significant difference between the control group and all other groups (P<.05) at the end of 28 days.CONCLUSIONThe translucency of hybrid ceramic for a restoration may not be important regarding the effects of coffee on translucency change because the specimens with different translucencies and finishing methods that were immersed to coffee had similar translucency parameters at the end of 28 days. The translucency of hybrid ceramic may be important in the case of red wine, however, since the results showed that highly translucent specimens exposed to red wine demonstrated better translucency parameters than specimens made from translucent blocks at the end of 28 days.
Purpose. The present study is aimed at examining the bond strength of cobalt-chromium (Co-Cr) metal frameworks, prepared through different techniques, to a single type of low-temperature porcelain system after the thermal aging process. Methods. A hundred and twenty Co-Cr alloy framework specimens were prepared using conventional casting, CAD/CAM, and two commercially different laser sintering devices, and dental porcelain was applied to the specimens. A single type of dental porcelain (Kuraray Noritake Dental Inc., Tokyo, Japan) was applied to the specimens. After the subgroups were determined, half of the specimens were subjected to a thermal aging process. Bond strength of specimens was evaluated using a 3-point bending test. The surfaces of the fractured specimens were evaluated using a stereomicroscope. The metal-porcelain bonding area of samples randomly selected from 8 groups has been examined with SEM under ×1000 magnifications. Normality distribution of obtained data was examined using by a Kolmogorov-Smirnov test. The obtained data of the present study was statistically analyzed with a statistical package program (SPSS for Windows 22.0, Chicago, IL, USA). Results. There was a statistically significant difference between CAD/CAM and the other three methods, and the bonding value of the CAD/CAM group was the highest among the groups. Besides, the bond strength between dental porcelain and 4 differently produced metal frameworks was high enough to surpass the acceptable threshold (>25 MPa) according to the ISO 9693. There was no statistically significant difference between thermal aging applied and nonapplied groups. Conclusions. Based on this study, it could be shown that the metal-ceramic bond strength is dependent on the manufacturing method used, but it is independent of the thermal aging application. It was found that the bond strength values of all samples with and without thermal aging application exceeded the minimum acceptable value of 25 MPa recommended by the ISO 9693.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.