Nanotechnology is becoming an important field of biomedical and clinical research and the application of nanoparticles in disease may offer promising advances in treatment of many diseases, especially cancer. Malignant melanoma is one of the most aggressive forms of cancer and its incidence is rapidly increasing. Redox-active cerium oxide nanoparticles (CNP) are known to exhibit significant antitumor activity in cells derived from human skin tumors in vitro and in vivo, whereas CNP is nontoxic and beyond that even protective (antioxidative) in normal, healthy cells of the skin. As the application of conventional chemotherapeutics is associated with harmful side effects on healthy cells and tissues, the clinical use is restricted. In this study, we addressed the question of whether CNP supplement a classical chemotherapy, thereby enhancing its efficiency without additional damage to normal cells. The anthracycline doxorubicin, one of the most effective cancer drugs, was chosen as reference for a classical chemotherapeutic agent in this study. Herein, we show that CNP enhance the antitumor activity of doxorubicin in human melanoma cells. Synergistic effects on cytotoxicity, reactive oxygen species generation, and oxidative damage in tumor cells were observed after co-incubation. In contrast to doxorubicin, CNP do not cause DNA damage and even protect human dermal fibroblasts from doxorubicin-induced cytotoxicity. A combination of classical chemotherapeutics with nongenotoxic but antitumor active CNP may provide a new strategy against cancer by improving therapeutic outcome and benefit for patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.