In the era of information technology and connected world, detecting malware has been a major security concern for individuals, companies and even for states. The New generation of malware samples upgraded with advanced protection mechanism such as packing, and obfuscation frustrate anti-virus solutions. API call analysis is used to identify suspicious malicious behavior thanks to its description capability of a software functionality. In this paper, we propose an effective and efficient malware detection method that uses sequential pattern mining algorithm to discover representative and discriminative API call patterns. Then, we apply three machine learning algorithms to classify malware samples. Based on the experimental results, the proposed method assures favorable results with 0.999 F-measure on a dataset including 8152 malware samples belonging to 16 families and 523 benign samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.