L-Arginine deiminase (ADI) catalyzes the irreversible hydrolysis of arginine to citrulline and ammonia. ADI is involved in the first step of the most widespread anaerobic route of arginine degradation. ADI, missing in high eukaryotes, is a potential antimicrobial and antiparasitic drug target. We have determined the crystal structure of ADI from Pseudomonas aeruginosa by the multiwavelength anomalous diffraction method at 2.45 Å resolution. The structure exhibits similarity to other arginine-modifying or substituted arginine-modifying enzymes such as dimethylarginine dimethylaminohydrolase (DDAH), arginine:glycine amidinotransferase, and arginine:inosamine-phosphate amidinotransferase, despite the lack of significant amino acid sequence homology to these enzymes. The similarity spans a core domain comprising five ␣ motifs arranged in a circle around a 5-fold pseudosymmetry axis. ADI contains an additional ␣-helical domain of novel topology inserted between the first and the second ␣ modules. A catalytic triad, Cys-His-Glu/Asp (arranged in a different manner from that of the thiol proteases), seen in the other arginine-modifying enzymes is also conserved in ADI, as well as many other residues involved in substrate binding. Based on this conservation pattern and the assumption that the substrate binding mode is similar to that of DDAH, an ADI catalytic mechanism is proposed. The main players are Cys-406, which mounts the nucleophilic attack on the carbon atom of the guanidinium group of arginine, and His-278, which serves as a general base.
The crystals of beta-amylase from Bacillus cereus belong to space group P21 with the following cell dimensions: a = 57.70 A, b = 92.87 A, c = 65.93 A, and beta =101.95 degrees. The structures of free and maltose-bound beta-amylases were determined by X-ray crystallography at 2.1 and 2.5 A with R-factors of 0.170 and 0.164, respectively. The final model of the maltose-bound form comprises 516 amino acid residues, four maltose molecules, 275 water molecules, one Ca2+, one acetate, and one sulfate ion. The enzyme consists of a core (beta/alpha)8-barrel domain (residues 5-434) and a C-terminal starch-binding domain (residues 435-613). Besides the active site in the core where two maltose molecules are bound in tandem, two novel maltose-binding sites were found in the core L4 region and in the C-terminal domain. The structure of the core domain is similar to that of soybean beta-amylase except for the L4 maltose-binding site, whereas the C-terminal domain has the same secondary structure as domain E of cyclodextrin glucosyltransferase. These two maltose-binding sites are 32-36 A apart from the active site. These results indicate that the ability of B. cereus beta-amylase to digest raw starch can be attributed to the additional two maltose-binding sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.