This work represents a systematic computational study of the distribution of the Fourier coefficients of cuspidal Hecke eigenforms of level Γ0(4) and half-integral weights. Based on substantial calculations, the question is raised whether the distribution of normalised Fourier coefficients with bounded indices can be approximated by a generalised Gaussian distribution. Moreover, it is argued that the apparent symmetry around zero of the data lends strong evidence to the Bruinier-Kohnen Conjecture on the equidistribution of signs and even suggests the strengthening that signs and absolute values are distributed independently.
Bu çalışmada yarım tamsayı ağırlıklı Hecke eigenformların sistematik seçimi probleminin özel bir durumu çözüme kavuşturulmuştur. Öyle ki 17/2 ve 21/2 ağırlıklı Hecke eigenformlar, Rankin-Cohen parantezi yardımıyla belli ağırlıktaki Eisenstein serisi ve klasik teta serisi cinsinden ifade edilmiştir. İspatlar tanımlardan yola çıkarak temel lineer cebir metotları yardımıyla modüler formlar için verilen Sturm sınırı kullanılarak yapılmıştır. Eisenstein serilerinin basit bir bölen fonksiyonu yardımıyla ifade edilebilir olması ve klasik teta serisinde çok fazla boşluk olması ile türevlerinin de kolayca hesaplanabilmesi nedeniyle bu örnekler yardımıyla Hecke eigenformların çok sayıda Fourier katsayısı bilgisayarda Magma, Sage veya Pari/GP gibi uygun bir cebir yazılımı yardımıyla kolaylıkla ve çok hızlı bir şekilde hesaplanabilir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.