This study aims to elucidate interaction of organics with microplastics in a comparative manner via the use of two model compounds (i.e., triclosan and malachite green) having different physicochemical properties, onto polyethylene (PE). TCS, is hydrophobic with low solubility, while MG is hydrophilic with high aqueous solubility. Kinetic studies indicate faster sorption (teq = 24 h) and equilibrium studies show much higher capacity (qe = 6,921 mg/g) for TCS, when compared to those of MG (teq = 5 d, qe = 221 mg/g). While pseudo-kinetic model fits sorption of both organics to PE, equilibrium isotherms as well as the results on effect of particle size and pH indicate dissimilar sorption mechanisms. Considering pHPZC = 2, observation of favourable sorption of TCS in acidic region and sorption being unaffected by particle size was explained by TCS sorption to be dominated by hydrophobic interactions in amorph regions of PE. Higher removal of MG was observed at lower surface charge of PE, and a clear favourable impact of surface area on MG sorptive capacity pointed to the presence of non-specific van der Waals type interactions on the surface of PE. Mechanistic evaluations presented here contribute to our understanding of interaction of MPs with organics in aquatic ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.