In line with technological developments, machine learning/data mining studies have significantly scaled up in crime analysis. The prediction of crime occurrences, the detection of the spatial/temporal distribution of the criminal cases, forecasting the type of crime are some of these study areas. By taking crime data resulting from a substantial increase in crime rates into consideration, unlabeled data can be utilized to enhance exploring the patterns of crime for future events or to make crime-related predictions easily. Therefore, in this study, active learning, selflearning, and random sampling techniques are applied to predict the outcome of criminal searches in England using the police data of 2019. According to the experimental analysis, active learning outperforms its counterparts using its entropy-based smart selection strategy data in case there is little labeled data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.