Purpose Cervical cancer is one of the most common causes of cancer mortality for women living in poverty, causing over 28,000 deaths annually in Latin America and 266,000 worldwide. To better understand the molecular basis of the disease we ascertained blood and tumor samples from Guatemala and Venezuela and performed genomic characterization. Experimental Design We performed HPV typing and identified somatically mutated genes using exome and ultra-deep targeted sequencing with confirmation in samples from Mexico. Copy number changes were also assessed in the exome sequence. Results Cervical cancer cases in Guatemala and Venezuela have an average age-of-diagnosis of 50 years, and 5.6 children. Analysis of 675 tumors revealed activation of PIK3CA and other phosphatidyl inositol (PI3K)/AKT pathway genes in 31% of squamous carcinomas and 24% of adeno- and adenosquamous tumors, predominantly at two sites (E542K, E545K) in the helical domain of the PIK3CA gene. This distribution of PIK3CA mutations is distinct from most other cancer types, and does not result in the in vitro phosphorylation of AKT. Somatic mutations were more frequent in squamous carcinomas diagnosed after age 50. Frequent gain of chromosome 3q was found and low PIK3CA mutation fractions in many tumors suggest that PI3K mutation can be a late event in tumor progression. Conclusions PI3K pathway mutation is important to cervical carcinogenesis in Latin America. Therapeutic agents that directly target PI3K could play a role in the therapy of this common malignancy.
Despite numerous human papillomavirus (HPV) frequency studies in women with cervical cancer (CC), little is known of HPV frequency trends according to patient age. In this work, we compare the mean age and frequency distribution by age of CC patients positive for different HPVs. This study included 462 CC patients. HPVs were detected by PCR and typed using DNA sequencing. A total of 456 patients (98.7%) were positive for HPV: 418 (90.5%) had single and 38 (8.2%) had double HPV infections. HPV16 (46.5%), HPV18 (10.4%), HPV45 (6.7%), and HPV31 (4.1%) were the most frequent viral types in single-infected patients. The mean ages of single-infected patients with HPV16 (49.2±13.3), HPV18 (47.9±12.2), HPV45 (47.9±11.7), or HPV39 (42.6±8.9) were significantly lower than the mean ages of patients singly (53.9±12.7; p<0.001, t-test) or doubly (55.4±12.7; p<0.05, t-test) infected with the remaining HPVs. Three different trends were identified: one for HPV16, another for HPVs18/45/39, and a third for the rest of HPVs. The frequency trend of HPV16 shows two peaks. The first (63.2%) was found in the youngest women (≤35 years), followed by a decreasing trend until the age of 55–60 years (31.1%). The second peak arose at 61–65 years (52.5%), followed by a decreasing trend. The trend for HPVs18/45/39 declined from the youngest (19.3%) to the oldest (>70 years; 12.8%) women. In contrast, the trend for the remaining HPVs increased from the youngest (15.8%) to the oldest (46.2%) women. Unlike other life-style factors, low-risk sexual behavior was associated with late onset of CC independent of low-oncogenic HPV types (p<0.05, Wald chi-square statistic). The data indicate that most CCs in young women depend on the presence of high-oncogenic HPVs. In contrast, almost half of CCs in older patients had low-oncogenic HPVs, suggesting they could depend on the presence of other factors.
Several copy number-altered regions (CNAs) have been identified in the genome of cervical cancer, notably, amplifications of 3q and 5p. However, the contribution of copy-number alterations to cervical carcinogenesis is unresolved because genome-wide there exists a lack of correlation between copy-number alterations and gene expression. In this study, we investigated whether CNAs in the cell lines CaLo, CaSki, HeLa, and SiHa were associated with changes in gene expression. On average, 19.2% of the cell-line genomes had CNAs. However, only 2.4% comprised minimal recurrent regions (MRRs) common to all the cell lines. Whereas 3q had limited common gains (13%), 5p was entirely duplicated recurrently. Genome-wide, only 15.6% of genes located in CNAs changed gene expression; in contrast, the rate in MRRs was up to 3 times this. Chr 5p was confirmed entirely amplified by FISH; however, maximum 33.5% of the explored genes in 5p were deregulated. In 3q, this rate was 13.4%. Even in 3q26, which had 5 MRRs and 38.7% recurrently gained SNPs, the rate was only 15.1%. Interestingly, up to 19% of deregulated genes in 5p and 73% in 3q26 were downregulated, suggesting additional factors were involved in gene repression. The deregulated genes in 3q and 5p occurred in clusters, suggesting local chromatin factors may also influence gene expression. In regions amplified discontinuously, downregulated genes increased steadily as the number of amplified SNPs increased (p<0.01, Spearman's correlation). Therefore, partial gene amplification may function in silencing gene expression. Additional genes in 1q, 3q and 5p could be involved in cervical carcinogenesis, specifically in apoptosis. These include PARP1 in 1q, TNFSF10 and ECT2 in 3q and CLPTM1L, AHRR, PDCD6, and DAP in 5p. Overall, gene expression and copy-number profiles reveal factors other than gene dosage, like epigenetic or chromatin domains, may influence gene expression within the entirely amplified genome segments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.