Our aim was to evaluate the performance of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), routinely used in the microbiology laboratory for bacterial identification, for bacterial typing in the setting of extended spectrum beta-lactamase producing Klebsiella pneumoniae (ESBL-KP) outbreak in the neonatal intensive care unit (NICU). Isolates from a 2011 outbreak in the NICU were retrieved from frozen stocks and analyzed by MALDI-TOF. The MALDI typing was compared with core genome multilocus sequence typing (cg-MLST). MALDI typing divided the 33 outbreak isolates into 2 clones: sequence type (ST)-290 and 405. These results were in complete agreement with cg-MLST results. The differentiation of the outbreak isolates into two clones correlated with the patients' location in the NICU, but also with their place of residence. Conclusion: Here, we show that MALDI-TOF MS, which has been integrated into the microbiology laboratory workflow for microbial species identification, can be secondarily used for epidemiological typing at no added cost. What is Known: • Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is now routinely used in the microbiology laboratory for bacterial identification What is New: • MALDI typing was used for outbreak investigation in the NICU and divided the outbreak isolates into two clones • MALDI-TOF MS may be secondarily used for epidemiological typing at no added cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.