The universal anomalies in the normal state of Cu-0 high-temperature superconductors follow from a single hypothesis: There exist chargeand spin-density excitations with the absorptive part of the polarizability at low frequencies co proportional to co/T, where T is the temperature, and constant otherwise. The behavior in such a situation may be characterized as that of a marginal Fermi liquid. The consequences of this hypothesis are worked out for a variety of physical properties including superconductivity.PACS numbers: 74.70.VyThe normal-state properties of the Cu-0 superconductors are as perplexing as their high transition temperatures. The electrical resistivity p(T), ' the thermal conductivity x(T), the optical conductivity cr(co), the Raman scattering intensity S(ro), the tunneling conductance as a function of voltage g(V), the nuclear relaxation rate T~' (T), and the Hall coefficient RH(T) (Ref.
For about twenty years, it has been the prevailing view that there can be no
metallic state or metal-insulator transition in two dimensions in zero magnetic
field. In the last several years, however, unusual behavior suggestive of such
a transition has been reported in a variety of dilute two-dimensional electron
and hole systems. The physics behind these observations is presently not
understood. We review and discuss the main experimental findings and suggested
theoretical models.Comment: To be published in Rev. Mod. Phy
We consider the iron pnictides in terms of a proximity to a Mott insulator. The superexchange interactions contain competing nearest-neighbor and next-nearest-neighbor components. In the undoped parent compound, these frustrated interactions lead to a two-sublattice collinear antiferromagnet (each sublattice forming a Néel ordering), with a reduced magnitude for the ordered moment. Electron or hole doping, together with the frustration effect, suppresses the magnetic ordering and allows a superconducting state. The exchange interactions favor a d-wave superconducting order parameter; in the notation appropriate for the Fe square lattice, its orbital symmetry is dxy. A number of existing and future experiments are discussed in light of the theoretical considerations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.