Ephedra is one of the largest genera of the Ephedraceae family, which is distributed in arid and semiarid regions of the world. In the traditional medicine from several countries some species from the genus are commonly used to treat asthma, cold, flu, chills, fever, headache, nasal congestion, and cough. The chemical constituents of Ephedra species have been of research interest for decades due to their contents of ephedrine-type alkaloids and its pharmacological properties. Other chemical constituents such as phenolic and amino acid derivatives also have resulted attractive and have provided evidence-based supporting of the ethnomedical uses of the Ephedra species. In recent years, research has been expanded to explore the endophytic fungal diversity associated to Ephedra species, as well as, the chemical constituents derived from these fungi and their pharmacological bioprospecting. Two additional aspects that illustrate the chemical diversity of Ephedra genus are the chemotaxonomy approaches and the use of ephedrine-type alkaloids as building blocks in organic synthesis. American Ephedra species, especially those that exist in Mexico, are considered to lack ephedrine type alkaloids. In this sense, the phytochemical study of Mexican Ephedra species is a promising area of research to corroborate their ephedrine-type alkaloids content and, in turn, discover new chemical compounds with potential biological activity. Therefore, the present review represents a key compilation of all the relevant information for the Ephedra genus, in particular the American species, the species distribution, their ecological interactions, its ethnobotany, its phytochemistry and their pharmacological activities and toxicities, in order to promote clear directions for future research.
Trichoderma spp colonizes the plant rhizosphere and provides pathogen resistance, abiotic stress tolerance, and enhance growth and development. We evaluated the Arabidopsis-Trichoderma interaction using a split system in which Trichoderma atroviride and Trichoderma virens were grown on PDA or MS medium. Arabidopsis growth was significantly increased at 3 and 5 days post-inoculation with both Trichoderma species, when the fungal strains were grown on PDA in split interaction. The analysis of DR5:uidA reporter line revealed a greater auxin accumulation in root tips when the fungi were grown on PDA in a split interaction. The root hair-defective phenotype of Arabidopsis rhd6 mutant was reverted with both Trichoderma species, even in split interactions. At 12 °C, Trichoderma species in split interactions were able to mitigate the effects of cold stress on the plant, and also Trichoderma induced the AtERD14 expression, a cold related gene. Volatile organic compounds analysis revealed that Trichoderma strains produce mainly sesquiterpenes, and that the type and abundance of these compounds was dependent on the fungal strain and the culture medium. Our results show that fungal nutrition is an important factor in plant growth in a split interaction.
Chia (Salvia polystachya Ort., Lamiaceae) is frequently used in Mexican traditional medicine to treat dysentery. In this study the main neo-clerodane diterpenes (polystachynes A, B and D, as well as linearolactone) were isolated from the aerial parts of chia, and their antiprotozoal activities toward Entamoeba histolytica and Giardia lamblia trophozoites were evaluated in vitro. Linearolactone was the most potent antiamoebic and antigiardial compound with IC(50) values of 22.9 microM for E. histolytica and 28.2 microM for G. lamblia. Polystachynes A, B and D, showed moderate antiprotozoal activity against both protozoans with IC(50) values ranging from 117.0 to 160.6 microM for E. histolytica and from 107.5 to 134.7 microM for G. lamblia. These data suggest that linearolactone may play an important role in the antidiarrhoeal activity of S. polystachya.
Chemical investigation of the aerial parts of Salvia herbacea led to the isolation of eight new neo-clerodane diterpenes (1-8), named tehuanins A-H, and three known compounds. The structures of these compounds were determined by analysis of their spectroscopic data. Three of the new diterpenes possess a 1,8-epoxy group (1-3). This unusual structural feature was confirmed by X-ray diffraction of 1. The structure of the previously isolated 1α,10α-epoxysalviarin was revised. The absolute configuration of 6 was established by X-ray diffraction analysis of its bromo derivative 6a. Cytotoxic and anti-inflammatory activities of these diterpenes were examined. None of the compounds were considered to be cytotoxic; however, compound 7 exhibited anti-inflammatory activity comparable to that of indomethacin.
Decachaeta, Salvia and Podachaenium genera are known for their wide variety of biological activities. Synthetic herbicides have caused a variety of environmental and resistance problems. Natural products represent an important alternative to combat such issues. Sesquiterpene lactones and diterpenes are families of bioactive natural products for which a range of activities have been described. The bioactivities of nine sesquiterpene lactones, eight heliangolides, one guaianolide and twenty two diterpenes isolated from species of the Decachaeta, Salvia and Podachaenium genera were tested by applying a methodical procedure that involves assays of compounds on etiolated wheat coleoptiles (Triticum aestivum), Standard Target Species (STS) and two important weeds (barnyardgrass and brachiaria). The results clearly show that all of the sesquiterpene lactones studied were active on coleoptiles. In addition, six lactones were phytotoxic on both STS and weeds, meaning that these compounds could be used in the development of natural herbicide models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.