Email spam is an unwanted bulk message that is sent to a recipient’s email address without explicit consent from the recipient. This is usually considered a means of advertising and maximizing profit, especially with the increase in the usage of the internet for social networking, but can also be very frustrating and annoying to the recipients of these messages. Recent research has shown that about 14.7 billion spam messages are sent out every single day of which more than 45% of these messages are promotional sales content that the recipient did not specifically opt-in. This has gotten the attention of many researchers in the area of natural language processing. In this paper, we used the Long Short-Time Memory (LSTM) for classification tasks between spam and Ham messages. The performance of LSTM is compared with that of a Recurrent Neural Network( RNN) which can also be used for a classification task of this nature but suffers from short-time memory and tends to leave out important information from earlier time steps to later ones in terms of prediction. The evaluation of the result shows that LSTM achieved 97% accuracy with both Adams and RMSprop optimizers compared to RNN with an accuracy of 94% with RMSprop and 87% accuracy with Adams optimizer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.