Capillary zone electrophoresis (CZE)-tandem mass spectrometry (MS/MS) has been recognized as a useful tool for top-down proteomics. However, its performance for deep top-down proteomics is still dramatically lower than widely used reversed-phase liquid chromatography (RPLC)-MS/MS. We present an orthogonal multidimensional separation platform that couples size exclusion chromatography (SEC) and RPLC based protein prefractionation to CZE-MS/MS for deep top-down proteomics of Escherichia coli. The platform generated high peak capacity (∼4000) for separation of intact proteins, leading to the identification of 5700 proteoforms from the Escherichia coli proteome. The data represents a 10-fold improvement in the number of proteoform identifications compared with previous CZE-MS/MS studies and represents the largest bacterial top-down proteomics data set reported to date. The performance of the CZE-MS/MS based platform is comparable to the state-of-the-art RPLC-MS/MS based systems in terms of the number of proteoform identifications and the instrument time.
Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry (CZE-ESI-MS/MS) has been recognized as an invaluable platform for top-down proteomics. However, the scale of top-down proteomics using CZE-MS/MS is still limited due to the low loading capacity and narrow separation window of CZE. In this work, for the first time we systematically evaluated the dynamic pH junction method for focusing of intact proteins during CZE-MS. The optimized dynamic pH junction based CZE-MS/MS approached 1-μL loading capacity, 90-min separation window and high peak capacity (~280) for characterization of an Escherichia coli proteome. The results represent the largest loading capacity and the highest peak capacity of CZE for top-down characterization of complex proteomes. Single-shot CZE-MS/MS identified about 2,800 proteoform-spectrum matches, nearly 600 proteoforms, and 200 proteins from the Escherichia coli proteome with spectrum-level false discovery rate (FDR) less than 1%. The number of identified proteoforms in this work is over three times higher than that in previous single-shot CZE-MS/MS studies. Truncations, N-terminal methionine excision, signal peptide removal and some post-translational modifications including oxidation and acetylation were detected.
The recent increase in extensively drug-resistant bacterial pathogens and the associated increase of morbidity and mortality demonstrate the immediate need for new antibiotic backbones with novel mechanisms of action. Here, we report the development of the PepSAVI-MS pipeline for bioactive peptide discovery. This highly versatile platform employs mass spectrometry and statistics to identify bioactive peptide targets from complex biological samples. We validate the use of this platform through the successful identification of known bioactive peptides from a botanical species, Viola odorata. Using this pipeline, we have widened the known antimicrobial spectrum for V. odorata cyclotides, including antibacterial activity of cycloviolacin O2 against A. baumannii. We further demonstrate the broad applicability of the platform through the identification of novel anticancer activities for cycloviolacins by their cytotoxicity against ovarian, breast, and prostate cancer cell lines.
Multilevel proteomics aims to delineate proteins at the peptide (bottom-up proteomics), proteoform (top-down proteomics), and protein complex (native proteomics) levels.Capillary electrophoresis-mass spectrometry (CE-MS) can achieve highly efficient separation and highly sensitive detection of complex mixtures of peptides, proteoforms, and even protein complexes because of its substantial technical progress. CE-MS has become a valuable alternative to the routinely used liquid chromatography-mass spectrometry for multilevel proteomics. This review summarizes the most recent (2019-2021) advances of CE-MS for multilevel proteomics regarding technological progress and biological applications. We also provide brief perspectives on CE-MS for multilevel proteomics at the end, highlighting some future directions and potential challenges.capillary isoelectric focusing-mass spectrometry, capillary zone electrophoresis-mass spectrometry, multilevel proteomics, protein complex, proteoform
| INTRODUCTIONProteomics aims to characterize proteins in cells comprehensively as a function of biological conditions, including but not limited to their expression, posttranslational modifications (PTMs), interactions, locations, and turnover (Aebersold & Mann, 2016;Zhang et al., 2013). Mass spectrometry (MS)-based proteomics has become crucial for pursuing better understandings of molecular mechanisms of fundamental cellular processes and disease development (Aebersold & Mann, 2016). There are three main strategies: bottom-up proteomics (BUP), top-down proteomics (TDP), and native proteomics.BUP is the most mature and widely used strategy. It identifies proteins through the MS and tandem MS (MS/MS) measurements of peptides derived from the enzymatic
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.