The shift from centralized to distributed generation and the need to address energy shortage and achieve the sustainability goals are among the important factors that drive increasing interests of governments, planners, and other relevant stakeholders in microgrid systems. Apart from the distributed renewable energy resources, fuel cells (FCs) are a clean, pollution-free, highly efficient, flexible, and promising energy resource for microgrid applications that need more attention in research and development terms. Furthermore, they can offer continuous operation and do not require recharging. This paper examines the exciting potential of FCs and their utilization in microgrid systems. It presents a comprehensive review of FCs, with emphasis on the developmental status of the different technologies, comparison of operational characteristics, and the prevailing techno-economic barriers to their progress and the future outlook. Furthermore, particular attention is paid to the applications of the FC technologies in microgrid systems such as grid-integrated, grid-parallel, stand-alone, backup or emergency power, and direct current systems, including the FC control mechanisms and hybrid designs, and the technical challenges faced when employing FCs in microgrids based on recent developments. Microgrids can help to strengthen the existing power grid and are also suitable for mitigating the problem of energy poverty in remote locations. The paper is expected to provide useful insights into advancing research and developments in clean energy generation through microgrid systems based on FCs.
Energy systems modelling and design are a critical aspect of planning and development among researchers, electricity planners, infrastructure developers, utilities, decision-makers, and other relevant stakeholders. However, to achieve a sustainable energy supply, the energy planning approach needs to integrate some key dimensions. Importantly, these dimensions are necessary to guide the simulation and evaluation. It is against this backdrop that this paper focuses on the simulation and analysis approaches for sustainable planning, design, and development of microgrids based on clean energy resources. The paper first provides a comprehensive review of the existing simulation tools and approaches used for designing energy generation technologies. It then discusses and compares the traditional strategies and the emerging trends in energy systems simulation based on the software employed, the type of problem to be solved, input parameters provided, and the expected output. The paper introduces a practical simulation framework for sustainable energy planning, which is based on the social-technical-economic-environmental-policy (STEEP) model. The STEEP represents a holistic sustainability model that considers the key energy systems planning dimensions compared to the traditional techno-economic model used in several existing simulation tools and analyses. The paper provides insights into data-driven analysis and energy modelling software development applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.