Applications of carbon nanotubes (CNTs) like field emission displays, super-capacitors, and cell growth scaffolds can benefit from controllable embedding of the CNTs in a material such that the CNTs are anchored and protrude a desired length. We demonstrate a simple method for anchoring densely packed, vertically aligned arrays of CNTs into silicone layers using spin-coating, CNT insertion, curing, and growth substrate removal. CNT arrays of 51 and 120 μm in height are anchored into silicone layers of thickness 26 and 36 μm, respectively. Scanning electron microscopy (SEM) and optical microscopy are used to characterize the sample morphology, a 5.5 m s −1 impinging water jet is used to apply shear stress, and a tensile test shows that the silicone layer detaches from the substrate before the CNTs are ripped from the layer. The CNTs are thus well anchored in the silicone layers. The spin-coating process gives control over layer thickness, and the method should have general applicability to various nanostructures and anchoring materials.
We have introduced inherent openings into densely packed carbon nanotube arrays to study self-organized pattern formation when the arrays undergo a wetting-dewetting treatment from nanotube tips. These inherent openings, made of circular or elongated hollows in nanotube mats, serve as dewetting centres, from where liquid recedes from. As the dewetting centres initiate dry zones and the dry zones expand, surrounding nanotubes are pulled away from the dewetting centres by liquid surface tension. Among short nanotubes, the self-organized patterns are consistent with the shape of the inherent openings, i.e. slender openings lead to elongated trench-like structures, and circular holes result in relatively round nest-like arrangements. Nanotubes in a relatively high mat are more connected, like in an elastic body, than those in a short mat. Small cracks often initialize themselves in a relatively high mat, along two or more adjacent round openings; each of the cracks evolves into a trench as liquid dries up. Self-organized pattern control with inherent openings needs to initiate the dewetting process above the nanotube tips. If there is no liquid on top, inherent openings barely enlarge themselves after the wetting-dewetting treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.