Direct gene transfer to the adult brain is dependent on vectors that transduce non-dividing cells, such as lentiviral vectors. Another aspect of the development of gene therapy to the brain is the need for cell-specific transgene expression. Expression from vesicular stomatitis virus G-protein (VSV-G) pseudotyped lentiviral vectors has been reported to be mainly neuron specific in the brain. We constructed cell-specific lentiviral vectors using the neuron-specific enolase (rNSE) or the glial fibrillary acidic protein (hGFAP) promoters and compared them to the ubiquitous human cytomegalovirus promoter (hCMV), a hybrid CMV/beta-actin promoter (CAG) and the promoter for human elongation factor 1 alpha (EF1 alpha). Our results showed that the hGFAP promoter was expressed only in glial cells, whereas rNSE was purely neuron specific, showing that VSV-G is pantropic in the rat striatum. We conclude that the VSV-G allows transduction of both glial and neuronal cells and the promoter dictates in what cell type the transgene will be expressed. The expression of transgenes exclusively in astrocytes would allow for local delivery of secreted transgene products, such as glial cell line-derived neurotrophic factor (GDNF), circumventing the anterograde transport that may induce unwanted side effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.