NM (nemaline myopathy) is a rare genetic muscle disorder defined on the basis of muscle weakness and the presence of structural abnormalities in the muscle fibres, i.e. nemaline bodies. The related disorder cap myopathy is defined by cap-like structures located peripherally in the muscle fibres. Both disorders may be caused by mutations in the TPM2 gene encoding β-Tm (tropomyosin). Tm controls muscle contraction by inhibiting actin-myosin interaction in a calcium-sensitive manner. In the present study, we have investigated the pathogenetic mechanisms underlying five disease-causing mutations in Tm. We show that four of the mutations cause changes in affinity for actin, which may cause muscle weakness in these patients, whereas two show defective Ca2+ activation of contractility. We have also mapped the amino acids altered by the mutation to regions important for actin binding and note that two of the mutations cause altered protein conformation, which could account for impaired actin affinity.
Mutations in the TPM2 gene, which encodes β-tropomyosin, are an established cause of several congenital skeletal myopathies and distal arthrogryposis. We have identified a TPM2 mutation, p.K7del, in five unrelated families with nemaline myopathy and a consistent distinctive clinical phenotype. Patients develop large joint contractures during childhood, followed by slowly progressive skeletal muscle weakness during adulthood. The TPM2 p.K7del mutation results in the loss of a highly conserved lysine residue near the N-terminus of β-tropomyosin, which is predicted to disrupt head-to-tail polymerization of tropomyosin. Recombinant K7del-β-tropomyosin incorporates poorly into sarcomeres in C2C12 myotubes and has a reduced affinity for actin. Two-dimensional gel electrophoresis of patient muscle and primary patient cultured myotubes showed that mutant protein is expressed but incorporates poorly into sarcomeres and likely accumulates in nemaline rods. In vitro studies using recombinant K7del-β-tropomyosin and force measurements from single dissected patient myofibres showed increased myofilament calcium sensitivity. Together these data indicate that p.K7del is a common recurrent TPM2 mutation associated with mild nemaline myopathy. The p.K7del mutation likely disrupts head-to-tail polymerization of tropomyosin, which impairs incorporation into sarcomeres and also affects the equilibrium of the troponin/tropomyosin-dependent calcium switch of muscle. Joint contractures may stem from chronic muscle hypercontraction due to increased myofibrillar calcium sensitivity while declining strength in adulthood likely arises from other mechanisms, such as myofibre decompensation and fatty infiltration. These results suggest that patients may benefit from therapies that reduce skeletal muscle calcium sensitivity, and we highlight late muscle decompensation as an important cause of morbidity.
BackgroundNemaline myopathy (NM) is a rare genetic muscle disorder, but one of the most common among the congenital myopathies. NM is caused by mutations in at least nine genes: Nebulin (NEB), α-actin (ACTA1), α-tropomyosin (TPM3), β-tropomyosin (TPM2), troponin T (TNNT1), cofilin-2 (CFL2), Kelch repeat and BTB (POZ) domain-containing 13 (KBTBD13), and Kelch-like family members 40 and 41 (KLHL40 and KLHL41). Nebulin is a giant (600 to 900 kDa) filamentous protein constituting part of the skeletal muscle thin filament. Around 90% of the primary structure of nebulin is composed of approximately 35-residue α-helical domains, which form super repeats that bind actin with high affinity. Each super repeat has been proposed to harbor one tropomyosin-binding site.MethodsWe produced four wild-type (WT) nebulin super repeats (S9, S14, S18, and S22), 283 to 347 amino acids long, and five corresponding repeats with a patient mutation included: three missense mutations (p.Glu2431Lys, p.Ser6366Ile, and p.Thr7382Pro) and two in-frame deletions (p.Arg2478_Asp2512del and p.Val3924_Asn3929del). We performed F-actin and tropomyosin-binding experiments for the nebulin super repeats, using co-sedimentation and GST (glutathione-S-transferase) pull-down assays. We also used the GST pull-down assay to test the affinity of WT nebulin super repeats for WT α- and β–tropomyosin, and for β-tropomyosin with six patient mutations: p.Lys7del, p.Glu41Lys, p.Lys49del, p.Glu117Lys, p.Glu139del and p.Gln147Pro.ResultsWT nebulin was shown to interact with actin and tropomyosin. Both the nebulin super repeats containing the p.Glu2431Lys mutation and nebulin super repeats lacking exon 55 (p.Arg2478_Asp2512del) showed weak affinity for F-actin compared with WT fragments. Super repeats containing the p.Ser6366Ile mutation showed strong affinity for actin. When tested for tropomyosin affinity, super repeats containing the p.Glu2431Lys mutation showed stronger binding than WT proteins to tropomyosin, and the super repeat containing the p.Thr7382Pro mutation showed weaker binding than WT proteins to tropomyosin. Super repeats containing the deletion p.Val3924_Asn3929del showed similar affinity for actin and tropomyosin as that seen with WT super repeats. Of the tropomyosin mutations, only p.Glu41Lys showed weaker affinity for nebulin (super repeat 18).ConclusionsWe demonstrate for the first time the existence of direct tropomyosin-nebulin interactions in vitro, and show that nebulin interactions with actin and tropomyosin are altered by disease-causing mutations in nebulin and tropomyosin.
In studies reported in the 1960s and since, blood plasma from radiation-exposed individuals has been shown to induce chromosome damage when transferred into lymphocyte cultures of non-irradiated persons. This effect has been described to occur via clastogenic factors, whose nature is still mostly unknown. We have previously examined clastogenic factors from irradiated individuals by looking at plasma-induced DNA damage in reporter cells. Plasma was tested from ca. 30 locally exposed clinical patients receiving fractionated radiation treatment, as well as from three radiological accident victims exposed in 1994, albeit sampled 14 years post-accident. In the current work, proteome changes in the plasma from all subjects were examined with 2D gel electrophoresis-based proteomics techniques, in order to evaluate the level of protein expression with respect to the findings of a clastogenic factor effect. No differences were observed in protein expression due to local radiation exposure (pre- vs post-exposure). In contrast, plasma from the radiation accident victims showed alterations in the expression of 18 protein spots (in comparison with plasma from the control group). Among these, proteins such as haptoglobin, serotransferrin/transferrin, fibrinogen and ubiquitin-60S ribosomal protein L40 were observed, none of them likely to be clastogenic factors. In conclusion, the proteomics techniques applied were unable to identify changes in the proteome of the locally irradiated patients, whereas such differences were observed for the accident victims. However, association with the clastogenic effect or any specific clastogenic factor remains unresolved and thus further studies with more sensitive techniques are warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.