Recent studies in the mouse have demonstrated that variations in lipin expression levels in adipose tissue have marked effects on adipose tissue mass and insulin sensitivity. In the mouse, lipin deficiency prevents normal adipose tissue development, resulting in lipodystrophy and insulin resistance, whereas excess lipin levels promote fat accumulation and insulin sensitivity. Here, we investigated the effects of genetic variation in lipin levels on glucose homeostasis across species by analyzing lipin transcript levels in human and mouse adipose tissues. A strong negative correlation was observed between lipin mRNA levels and fasting glucose and insulin levels, as well as an indicator of insulin resistance (HOMA-IR), in both mice and humans. We subsequently analyzed the allelic diversity of the LPIN1 gene in dyslipidemic Finnish families, as well as in a case-control sample of obese (n = 477) and lean (n = 821) individuals. Alleles were defined by genotyping seven single nucleotide polymorphisms (SNPs) of the critical DNA region over the LPIN1 gene. Intragenic SNPs and corresponding allelic haplotypes exhibited associations with serum insulin levels and body mass index (P = 0.002-0.04). Both the expression levels in adipose tissue across species and genetic data in human study samples highlight the importance of lipin in glucose homeostasis and imply that allelic variants of this gene have significance in human metabolic traits.
Hepatic nuclear factor-4␣ (HNF-4␣), a transcription factor involved in the regulation of serum lipid and glucose levels, has recently been associated with type 2 diabetes. The HNF-4␣ gene (HNF4A) resides on chromosome 20q12-q13.1, which, in addition to type 2 diabetes, has also previously been linked to high triglycerides in Finnish familial combined hyperlipidemia (FCHL) families. FCHL, characterized by elevated levels of serum total cholesterol, triglycerides, or both, is a common dyslipidemia observed in up to 20% of patients with premature coronary heart disease. Considering the clear phenotypic overlap between type 2 diabetes and FCHL, both predisposing to high serum triglycerides and glucose intolerance, we tested this gene for association in dyslipidemic families originating from two distinct populations, Finnish and Mexican, and comprising 1,447 subjects. Our data show that common HNF4A variants and haplotypes are associated with elevated serum lipid levels and the metabolic syndrome (P ؍ 0.008 -0.04), as well as with elevated glucose parameters (P ؍ 0.008 -0.03), using family-based association analysis. Importantly, both Finnish and Mexican families shared two common lipid-associated HNF4A haplotypes (P ؍ 0.005 for total cholesterol and 0.006 for triglycerides). In conclusion, we show for the first time that common HNF4A variants are associated with high serum lipid levels and the metabolic syndrome.
Background: Many genome-wide scans aimed at complex traits have been statistically underpowered due to small sample size. Combining data from several genome-wide screens with comparable quantitative phenotype data should improve statistical power for the localisation of genomic regions contributing to these traits. Objective: To perform a genome-wide screen for loci affecting adult stature by combined analysis of four previously performed genome-wide scans. Methods: We developed a web based computer tool, Cartographer, for combining genetic marker maps which positions genetic markers accurately using the July 2003 release of the human genome sequence and the deCODE genetic map. Using Cartographer, we combined the primary genotype data from four genome-wide scans and performed variance components (VC) linkage analyses for human stature on the pooled dataset of 1417 individuals from 277 families and performed VC analyses for males and females separately. Results: We found significant linkage to stature on 1p21 (multipoint LOD score 4.25) and suggestive linkages on 9p24 and 18q21 (multipoint LOD scores 2.57 and 2.39, respectively) in males-only analyses. We also found suggestive linkage to 4q35 and 22q13 (multipoint LOD scores 2.18 and 2.85, respectively) when we analysed both females and males and to 13q12 (multipoint LOD score 2.66) in females-only analyses. Conclusions: We strengthened the evidence for linkage to previously reported quantitative trait loci (QTL) for stature and also found significant evidence of a novel male-specific QTL on 1p21. Further investigation of several interesting candidate genes in this region will help towards characterisation of this first sexspecific locus affecting human stature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.