The two common outcomes of celiac disease, classical GI and extraintestinal manifestations, had marked differences on the diversity and composition of intestinal microbiota. This association suggested that intestinal microbiota may have a role in the manifestation of the disease.
BackgroundThe mucus layer covering the human intestinal epithelium forms a dynamic surface for host-microbial interactions. In addition to the environmental factors affecting the intestinal equilibrium, such as diet, it is well established that the microbiota composition is individually driven, but the host factors determining the composition have remained unresolved.ResultsIn this study, we show that ABO blood group is involved in differences in relative proportion and overall profiles of intestinal microbiota. Specifically, the microbiota from the individuals harbouring the B antigen (secretor B and AB) differed from the non-B antigen groups and also showed higher diversity of the Eubacterium rectale-Clostridium coccoides (EREC) and Clostridium leptum (CLEPT) -groups in comparison with other blood groups.ConclusionsOur novel finding indicates that the ABO blood group is one of the genetically determined host factors modulating the composition of the human intestinal microbiota, thus enabling new applications in the field of personalized nutrition and medicine.
Human mesenchymal stem cells (hMSCs) display immunosuppressive properties in vitro and the potential has also been transferred successfully to clinical trials for treatment of autoimmune diseases. OX-2 (CD200), a member of the immunoglobulin superfamily, is widely expressed in several tissues and has recently been found from hMSCs. The CD200 receptor (CD200R) occurs only in myeloid-lineage cells. The CD200-CD200R is involved in down-regulation of several immune cells, especially macrophages. The present study on 20 hMSC lines shows that the CD200 expression pattern varied from high (CD200Hi) to medium (CD200Me) and low (CD200Lo) in bone marrow-derived mesenchymal stem cell (BMMSC) lines, whereas umbilical cord blood derived mesenchymal stem cells (UCBMSCs) were constantly negative for CD200. The role of the CD200-CD200R axis in BMMSCs mediated immunosuppression was studied using THP-1 human macrophages. Interestingly, hMSCs showed greater inhibition of TNF-α secretion in co-cultures with IFN-γ primed THP-1 macrophages when compared to LPS activated cells. The ability of CD200Hi BMMSCs to suppress TNF-α secretion from IFN-γ stimulated THP-1 macrophages was significantly greater when compared to CD200Lo whereas UCBMSCs did not significantly reduce TNF-α secretion. The interference of CD200 binding to the CD200R by anti-CD200 antibody weakened the capability of BMMSCs to inhibit TNF-α secretion from IFN-γ activated THP-1 macrophages. This study clearly demonstrated that the efficiency of BMMSCs to suppress TNF-α secretion of THP-1 macrophages was dependent on the type of stimulus. Moreover, the CD200-CD200r axis could have a previously unidentified role in the BMMSC mediated immunosuppression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.