Summaryobjective To assess the impact of a small-scale irrigation scheme in Ziway area, a semi-arid area in the Central Ethiopian Rift Valley, on malaria transmission.method Parasitological, entomological and socio-economic studies were conducted in a village with and a village without irrigation. Blood smear samples were taken from individuals during the dry and wet seasons of 2005 ⁄ 2006. Socio-economic data were collected from household heads and key agricultural and health informants through interviews and questionnaires. Larval and adult mosquitoes were sampled during the dry and short wet seasons of 2006. Female anopheline mosquitoes were tested by enzyme-linked immunosorbent assay for blood meal sources and sporozoite infections.results Malaria prevalence was higher in the irrigated village (19%, P < 0.05) than the non-irrigated village (16%). In the irrigated village, malaria prevalence was higher in the dry season than in the wet season while the reverse occurred in the non-irrigated village. Households with access to irrigation had larger farm land sizes and higher incomes, but also higher prevalence of malaria. Larval and adult abundance of the malaria vectors, Anopheles arabiensis and Anopheles pharoensis, was higher in the irrigated than in the non-irrigated village throughout the study period. Furthermore, the abundance of An. pharoensis was significantly higher than that of An. arabiensis during the dry irrigated period of the year. Canal leakage pools, irrigated fields and irrigation canals were the major breeding habitats of the two vector mosquitoes. Plasmodium falciparum sporozoite infection rates of 1.18% and 0.66% were determined for An. arabiensis and An. pharoensis in the irrigated village. Peak biting activities of the vectors occurred before 22:00 h, which is a source of concern that the effectiveness of ITNs may be compromised as the mosquitoes feed on blood before people go to bed.conclusion Irrigation schemes along the Ethiopian Rift Valley may intensify malaria by increasing the level of prevalence during the dry season. To reduce the intensity of malaria transmission in the smallscale irrigation schemes currently in operation in Ethiopia, year-round source reduction by using proper irrigation water management, coupled with health education, needs to be incorporated into the existing malaria control strategies.
The biting cycle of the malaria vector Anopheles arabiensis Patton (Diptera: Culicidae) was assessed by hourly light trap collections in three villages in Tigray, northern Ethiopia. Hourly catches were conducted in two houses in each village, for four consecutive nights. Light traps were set from 18.00 hours to 07.00 hours in houses in which people slept under untreated bednets. Anopheles arabiensis showed early biting activities, which peaked between 19.00 hours and 20.00 hours in the three villages; over 70% of biting activity occurred before 22.00 hours, when people typically retire to bed. This early biting activity may have a negative impact on the efficiency of bednets to control malaria.
West and East Africa experience high variability of rainfall that is expected to increase with climate change. This results in fluctuations in water availability for food production and other socioeconomic activities. Water harvesting and storage can mitigate the adverse effects of rainfall variability. But past studies have shown that when investments in water storage are not guided by environmental health considerations, the increased availability of open water surface may increase the transmission of waterrelated diseases. This is demonstrated for schistosomiasis associated with small reservoirs in Burkina Faso, and for malaria in Ethiopia around large dams, small dams, and water harvesting ponds. The concern is that the rush to develop water harvesting and storage for climate change adaptation may increase the risk for already vulnerable people, in some cases more than canceling out the benefits of greater water availability. Taking health issues into account in a participatory approach to planning, design, and management of rainwater harvesting and water storage, as well as considering the full range of water storage options would enable better opportunities for enhancing resilience against climate change in vulnerable populations in sub-Saharan Africa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.