The tribe Bovini comprises cattle and cattle-like species. Reconstructions of their phylogeny have so far been incomplete and have yielded conflicting conclusions about the relationship of American bison and wisent (European bison). We have compared the sequences of three mitochondrial and two Y-chromosomal DNA segments. Mitochondrial DNA indicates that four distinct maternal lineages diverged after an early split-off of the buffalo species, leading to (1) taurine cattle and zebu, (2) wisent, (3) American bison and yak, and (4) banteng, gaur, and gayal, respectively. At a higher level, lineages (1) and (2) and lineages (3) and (4) are probably associated. In contrast, Y-chromosomal sequences indicate a close association of American and European bison, which is in agreement with their morphological similarity, complete fertility of hybrid offspring, and amplified fragment length polymorphism (AFLP) fingerprints of nuclear DNA. One explanation for the anomalous divergence of the mitochondrial DNA from the two bison species is lineage sorting, which implies that two distinct mitochondrial lineages coexisted in the bison-yak branch until the recent divergence of American bison and wisent. Alternatively, the wisent may have emerged by species hybridization initiated by introgression of bison bulls in another ancestral species. This "transpatric" mode of species formation would be consistent with the recent appearance of the wisent in the fossil record without clearly identifiable ancestors.
Purpose. Wnt signaling regulates the fine balance between stemness and differentiation. Here, the role of Wnt signaling to maintain the balance between estrogen-induced proliferation and progesterone-induced differentiation during the menstrual cycle, as well as during the induction of hyperplasia and carcinogenesis of the endometrium, was investigated. Experimental Design: Endometrial gene expression profiles from estradiol (E 2 ) and E 2 + medroxyprogesterone acetate-treated postmenopausal patients were combined with profiles obtained during the menstrual cycle (PubMed; GEO DataSets). Ishikawa cells were transfected with progesterone receptors and Wnt inhibitors dickkopf homologue 1 (DKK1) and forkhead box O1 (FOXO1), measuring Wnt activation. Expression of DKK1 and FOXO1 was inhibited by use of sequence-specific short hairpins. Furthermore, patient samples (hormone-treated endometria, hyperplasia, and endometrial cancer) were stained for Wnt activation using nuclear β-catenin and CD44. Results: In vivo, targets and components of the Wnt signaling pathway (among them DKK1 and FOXO1) are regulated by E 2 and progesterone. In Wnt-activated Ishikawa cells, progesterone inhibits Wnt signaling by induction of DKK1 and FOXO1. Furthermore, using siRNA-mediated knockdown of both DKK1 and FOXO1, progesterone inhibition of Wnt signaling was partly circumvented. Subsequently, immunohistochemical analysis of the Wnt target gene CD44 showed that progesterone acted as an inhibitor of Wnt signaling in hyperplasia and in well-differentiated endometrial cancer. The female sex hormones estradiol (E 2 ) and progesterone play rate-limiting roles in the cyclical renewal of the inner layer of the uterus (endometrium). In the first half of the regular menstrual cycle, the proliferation phase, E 2 is required to expand the endometrial layer by inducing cell proliferation. In the second half of the menstrual cycle, the secretory phase, progesterone levels increase, which antagonizes the proliferative activity of E 2 by inducing differentiation of epithelial and stromal cells of the endometrium (1). Thus, inhibition of E 2 -induced proliferation by progesterone is crucial for the maintenance of homeostasis in the endometrium.Increased estrogen signaling often underlies endometrial hyperplasia and is a well-established risk factor for endometrial cancer (2). Because progesterone inhibits estrogen-induced endometrial proliferation, progesterone has been used in its synthetic form [i.e., medroxyprogesterone acetate (MPA)] in palliative treatment of advanced and recurrent endometrial cancer with modest though significant response rates (15-25%; ref. 3). Progesterone has also been used as a primary treatment for endometrial carcinoma confined to the endometrial layer of the uterus, for example, in premenopausal women determined to preserve fertility. Response rates in these women can be up to 60% (4, 5), indicating that progesterone signaling in well-differentiated endometrial cancer is a potent inhibitor of endometrial carcinogene...
Human body fluids such as blood and saliva represent the most common source of biological material found at a crime scene. Reliable tissue identification in forensic science can reveal significant insights into crime scene reconstruction and can thus contribute toward solving crimes. Limitations of existing presumptive tests for body fluid identification in forensics, which are usually based on chemoluminescence or protein analysis, are expected to be overcome by RNA-based methods, provided that stable RNA markers with tissue-specific expression patterns are available. To generate sets of stable RNA markers for reliable identification of blood and saliva stains we (1) performed whole-genome gene expression analyses on a series of timewise degraded blood and saliva stain samples using the Affymetrix U133 plus2 GeneChip, (2) consulted expression databases to obtain additional information on tissue specificity, and (3) confirmed expression patterns of the most promising candidate genes by quantitative real-time polymerase chain reaction including additional forensically relevant tissues such as semen and vaginal secretion. Overall, we identified nine stable mRNA markers for blood and five stable mRNA markers for saliva detection showing tissuespecific expression signals in stains aged up to 180 days of age, expectedly older. Although, all of the markers were able to differentiate blood/saliva from semen samples, none of them could differentiate vaginal secretion because of the complex nature of vaginal secretion and the biological similarity of buccal and vaginal mucosa. We propose the use of these 14 stable mRNA markers for identification of blood and saliva stains in future forensic practice.
Hybridization between wild and domestic bovine species occurs worldwide either spontaneously or by organized crossing. We have analysed hybridization of banteng (Bos javanicus) and zebu (Bos indicus) in south-east Asian cattle using mitochondrial DNA (PCR-RFLP and sequencing), AFLP, satellite fragment length polymorphisms (SFLP or PCR-RFLP of satellite DNA) and microsatellite genotyping. The Indonesian Madura zebu breed is reputed to be of hybrid zebu-banteng origin, but this has never been documented and Bali cattle are considered to be a domesticated form of banteng. The banteng mitochondrial type was found in all animals sampled on the isle of Bali, Indonesia, but only in 35% of the animals from a Malaysian Bali-cattle population.The Madura animals also carried mitochondrial DNA of either zebu and banteng origin. In both populations, zebu introgression was confirmed by AFLP and SFLP. Microsatellite analysis of the Malaysian Bali population revealed for 12 out of 15 loci screened, Bali-cattle-specific alleles, several of which were also found in wild banteng animals. The tools we have described are suitable for the detection of species in introgression studies, which are essential for the genetic description of local breeds and the preservation of their economic and cultural value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.