Recently, promising results of the antitumor effects were observed in patients with metastatic castration-resistant prostate cancer treated with 177Lu-labeled PSMA-ligands. Radionuclide therapy efficacy may even be improved by using the alpha emitter Ac-225. Higher efficacy is claimed due to high linear energy transfer specifically towards PSMA positive cells, causing more double-strand breaks. This study aims to manufacture [225Ac]Ac-PSMA-I&T according to good manufacturing practice guidelines for the translation of [225Ac]Ac-PSMA-I&T into a clinical phase 1 dose escalation study. Quencher addition during labeling was investigated. Quality control of [225Ac]Ac-PSMA-I&T was based on measurement of Fr-221 (218 keV), in equilibrium with Ac-225 in approximately six half-lives of Fr-221 (T½ = 4.8 min). Radio-(i)TLC methods were utilized for identification of the different radiochemical forms, gamma counter for concentration determination, and HPGe-detector for the detection of the radiochemical yield. Radiochemical purity was determined by HPLC. The final patient dose was prepared and diluted with an optimized concentration of quenchers as during labeling, with an activity of 8–12 MBq (±5%), pH > 5.5, 100 ± 20 μg/dose, PSMA-I&T, radiochemical yield >95%, radiochemical purity >90% (up to 3 h), endotoxin levels of <5 EU/mL, osmolarity of 2100 mOsmol, and is produced according to current guidelines. The start of the phase I dose escalation study is planned in the near future.
Background Radiopharmaceuticals are considered as regular medicinal products and therefore the same regulations as for non-radioactive medicinal products apply. However, specific aspects should be considered due to the radiochemical properties. Radiopharmaceutical dedicated monographs are developed in the European Pharmacopoeia to address this. Currently, different quality control methods for non-registered radiopharmaceuticals are utilized, often focusing on radio-TLC only, which has its limitations. When the radiochemical yield (RCY) is measured by radio-TLC analysis, degradation products caused by radiolysis are frequently not detected. In contrast, HPLC analysis defines the radiochemical purity (RCP), allowing for detection of peak formation related to radiolysis. During the introduction and optimization phase of therapeutic radiopharmaceuticals, significant percentages of impurities, like radiolysed construct formation, may have consequential impact on patient treatment. Since more hospitals and institutes are offering radiopharmaceutical therapies, such as [177Lu]Lu-PSMA with an in-house production, the demand for adequate quality control is increasing. Here we show the optimization and implementation of a therapeutic radiopharmaceutical, including the comparison of ITLC and HPLC quality control. Results Downscaled conditions (74 MBq/μg) were in concordance to clinical conditions (18 GBq/250 µg, 5 mL syringe/100 mL flacon); all results were consistent with an > 98% RCY (radio-TLC) and stability of > 95% RCP (HPLC). Radio-TLC did not identify radiolysis peaks, while clear identification was performed by HPLC analysis. Decreasing the RCP with 50%, reduced the cell-binding capacity with 27%. Conclusion This research underlines the importance of the radiolabeling and optimization including clinical implementation and clarifies the need for cross-validation of the RCY and RCP for quality control measurements. Only HPLC analysis is suitable for identification of radiolysis. Here we have proven that radiolysed [177Lu]Lu-PSMA has less binding affinity and thus likely will influence treatment efficacy. HPLC analysis is therefore essential to include in at least the validation phase of radiopharmaceutical implementation to ensure clinical treatment quality.
For patients with metastatic castration-resistant prostate cancer (mCRPC), the survival benefit of classic treatment options with chemotherapy and drugs targeting androgen signaling is limited. Therefore, beta and alpha radionuclide therapy (RNT) have emerged as novel treatment options for patients with mCRPC. Radioligands target the prostate-specific membrane antigen (PSMA) epitopes, which are upregulated up to a thousand times more in prostate cancer cells compared to the cells in normal tissues. For this reason, PSMA is an excellent target for both imaging and therapy. Over the past years, many studies have investigated the treatment effects of lutetium-177 labeled PSMA (177Lu-PSMA) and actinium-225 labeled PSMA (225Ac-PSMA) RNT in patients with mCRPC. While promising results have been achieved, this field is still in development. In this review, we have summarized and discussed the clinical data of 177Lu-PSMA and 225Ac-PSMA RNT in patients with mCRPC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.