Background Anti-CD20 B-cell depletion has not shown superior efficacy to standard immunosuppression in patients with systemic lupus erythematosus (SLE). Besides trial design, potential explanations are incomplete B-cell depletion in relation to substantial surges in B-cell-activating factor (BAFF). To improve B-cell targeting strategies, we conducted the first study in SLE patients aimed at investigating immunological effects and feasibility of combining rituximab (RTX; anti-CD20) and belimumab (BLM; anti-BAFF). Methods Reported is the long-term follow-up of a Phase 2 proof-of-concept study in 15 patients with SLE including 12 (80%) with lupus nephritis (LN). Results In 10/15 (67%) patients, a clinical response was observed by achievement of lupus low disease activity state, of which 8 (53%) continued treatment (BLM + ≤7.5 mg prednisolone) for the complete 2 years of follow-up. Five patients (33%) were referred to as ‘non-responders’ due to persistent LN, major flare or repetitive minor flares. Out of 12 LN patients, 9 (75%) showed a renal response including 8 (67%) complete renal responders. All anti-dsDNA+ patients converted to negative, and both anti-C1q and extractable nuclear antigen autoantibodies showed significant reductions. CD19+ B cells showed a median decrease from baseline of 97% at 24 weeks, with a persistent reduction of 84% up to 104 weeks. When comparing responders with non-responders, CD20+ B cells were depleted significantly less in non-responders and double-negative (DN) B cells repopulated significantly earlier. Conclusions Combined B-cell targeted therapy with RTX and BLM prevented full B-cell repopulation including DN B cells, with concomitant specific reduction of SLE-relevant autoantibodies. The observed immunological and clinical benefits in a therapy-refractory SLE population prompt further studies on RTX + BLM.
Kidney transplant recipients (KTRs) are at increased risk for a more severe course of COVID-19, due to their pre-existing comorbidity and immunosuppression. Consensus protocols recommend lowering immunosuppression in KTRs with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but the optimal combination remains unclear. Calcineurin inhibitors (CNIs) are cornerstone immunosuppressants used in KTRs and some have been reported to possess antiviral activity against RNA viruses, including coronaviruses. Here, we evaluated the effect of the CNIs tacrolimus, cyclosporin A, and voclosporin (VCS), as well as other immunosuppressants, on SARS-CoV-2 replication in cell-based assays. Unexpected, loss of compound due to plastic binding and interference of excipients in pharmaceutical formulations (false-positive results) complicated the determination of EC50 values of cyclophilin-dependent CNI’s in our antiviral assays. Some issues could be circumvented by using exclusively glass lab ware with pure compounds. In these experiments, VCS reduced viral progeny yields in human Calu-3 cells at low micromolar concentrations and did so more effectively than cyclosporin A, tacrolimus or other immunosuppressants. Although, we cannot recommend a particular immunosuppressive regimen in KTRs with COVID-19, our data suggest a potential benefit of cyclophilin-dependent CNIs, in particular VCS in reducing viral progeny, which warrants further clinical evaluation in SARS-CoV-2-infected KTRs.
Background:Belimumab (BLM), a recombinant human monoclonal antibody directed against B-cell activating factor (BAFF), is the first approved biological agent for patients with active severe systemic lupus erythematosus (SLE) and lupus nephritis (LN). There is clinical evidence that combining BLM with B cell depleting therapy can ameliorate disease activity in severe, refractory SLE patients1. Although BLM is a B cell directed therapy and has been shown to significantly decrease total B cells, flow cytometry observations suggest a rapid increase of circulating memory B cells (MBC)2.Objectives:To investigate dynamics of B-cell subsets in SLE patients treated with or without BLM, with a focus on assessing MBC characteristics.Methods:Extensive B cell subset phenotyping was performed by high-sensitivity (HS) flow cytometry (acquisition of 107 leukocytes; per EuroFlow protocols3) on samples from active LN or SLE patients with major organ involvement treated with standard of care (SOC) consisting of high dose steroids and mycophenolate mofetil combined with or without the addition of BLM. MBC gene expression profiles were characterized with single-cell RNA and V(D)J sequencing (ScRNA-SEQ).Results:By employing HS flowcytometry, we established that the absolute increase in circulating MBC in SLE and LN patients was significant for patients who initiated BLM (Figure 1). The increase was observed in a broad range of MBC subsets (Unswitched, IgG1+, IgG2+, IgA1+, IgA2+) at 2 and 4 weeks following initiation of BLM treatment. This rise in MBC could hypothetically be attributed to either proliferation of blood MBC, BLM induced migration of tissue-resident MBCs or BLM related retention of tissue-destined MBC in the blood. ScRNA-SEQ analysis of cell cycle gene-expression was performed and established in both groups a non-proliferating phenotype [in approximately ~94%] of MBC post-treatment, including absence of MKI67 as active proliferation marker. Clonal diversity analysis comparing week 2 with baseline revealed an unexpected decrease of the largest MBC clones in BLM, whereas no change in clonality was observed with SOC alone. Together these data indicate that proliferation is unlikely to be responsible for the observed increase in MBC by BLM. Furthermore, a clear difference was found in gene-expression levels between both treatment groups: BLM was responsible for the upregulation of 72 vs 10 genes in SOC, likewise 162 vs 32 genes were downregulated. Most importantly, a significant downregulation of the migration genes SELL (CD62L), CCR7, ITGB1, RAC2 and ICAM2, were specifically seen in BLM treated patients. This may reflect disrupted lymphocyte trafficking, preventing MBCs from transmigrating from the blood into tissue owing to reduced migration molecules, or preventing MBCs from being retained at the tissue level owing to reduction in tissue adhesion proteins.Conclusion:The addition of BLM to SOC significantly increases MBCs in patients with SLE independently of proliferation, accompanied by a strong modulation of gene expression, including reduced expression of migration markers pointing towards disrupted lymphocyte trafficking. These data may have important implications for improving treatment strategies in patients with LN or severe SLE, as a deeper depletion of autoreactive MBCs could be established by adding B-cell-depleting therapy after the initiation of BLM.Figure 1.Change in pre-germinal center and memory B cell counts from baseline to week 4 of patients with SLE or LN treated with SOC (n=8) or SOC+BLM (n=11).References:[1]Arends EJ et al. Long-term effects of combined B cell immunomodulation with rituximab and belimumab in severe, refractory systemic lupus erythematosus: 2-year results. Nephrol Dial Transplant. 2020 Jun 27 gfaa117.[2]Stohl W et al. Belimumab reduces autoantibodies, normalizes low complement levels, and reduces select B cell populations in patients with SLE. Arthritis Rheum. 2012;64(7):2328-2337.[3]Blanco et al, Age-associated distribution of B and plasma cell subsets in peripheral blood - J Allergy Clin Immunol 2018 141 2208-2219.Disclosure of Interests:Eline J. Arends: None declared, Mihaela Zlei: None declared, Christopher M. Tipton: None declared, Zgjim Osmani: None declared, Sylvia Kamerling: None declared, Ton Rabelink: None declared, Ignacio Sanz: None declared, Jacques J.M. van Dongen Paid instructor for: BD Biosciences: Educational Services (fees for LUMC), Consultant of: BD Biosciences and Cytognos (fees for LUMC), Grant/research support from: GSK (flow cytometry studies for GSK BLISS-BELIEVE study NCT03312907), Cees van Kooten: None declared, Y.K. Onno Teng Consultant of: Aurinia provided financial compensation for consultancy, Grant/research support from: GSK provided belimumab for free for the Synbiose-2 clinical trial and provided an unrestricted grant to conduct the study.
BackgroundB-cell depletion with rituximab (RTX) is an effective treatment for anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV) patients. Nevertheless, relapses are frequent after RTX, often preceded by B-cell repopulation suggesting that residual autoreactive B-cells persist despite therapy. Therefore, this study aimed to identify minimal residual autoimmunity (MRA) in the B-cell compartment of AAV patients treated with RTX.MethodsEuroFlow-based highly-sensitive flow cytometry (HSFC) was employed to study B-cell and plasma cell (PC) subsets in-depth in AAV patients before and after RTX treatment. Additionally, peripheral blood mononuclear cells (PBMCs) of these RTX-treated AAV patients were cultured and in vitro stimulated with CpG, IL-2, and IL-21 to induce antibody-secreting cells (ASC). (ANCA)-IgG was measured in these supernatants by ELISA.ResultsBy employing EuroFlow-based HSFC, we detected circulating CD19+ B-cells at all timepoints after RTX treatment, in contrast to conventional low-sensitive flow cytometry. Pre-germinal center (Pre-GC) B-cells, memory B-cells and CD20+CD138− plasmablasts (PBs) were rapidly and strongly reduced, while CD20−CD138− PrePC and CD20-CD138+ mature (m)PCs were reduced slower and remained detectable. Both memory B-cells and CD20− PCs remained detectable after RTX. Serum ANCA-IgG decreased significantly upon RTX. Changes in ANCA levels strongly correlated with changes in naive, switched CD27+ and CD27− (double-negative) memory B-cells, but not with plasma cells. Lastly, we demonstrated in vitro ANCA production by AAV PBMCs, 24 and 48 weeks after RTX treatment reflecting MRA in the memory compartment of AAV patients.ConclusionWe demonstrated that RTX induced strong reductions in circulating B-cells, but never resulted in complete B-cell depletion. Despite strongly reduced B-cell numbers after RTX, ANCA-specific memory B-cells were still detectable in AAV patients. Thus, MRA is identifiable in AAV and can provide a potential novel approach in personalizing RTX treatment in AAV patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.