Microsimulation models are becoming increasingly common in the field of decision modeling for health. Because microsimulation models are computationally more demanding than traditional Markov cohort models, the use of computer programming languages in their development has become more common. R is a programming language that has gained recognition within the field of decision modeling. It has the capacity to perform microsimulation models more efficiently than software commonly used for decision modeling, incorporate statistical analyses within decision models, and produce more transparent models and reproducible results. However, no clear guidance for the implementation of microsimulation models in R exists. In this tutorial, we provide a step-by-step guide to build microsimulation models in R and illustrate the use of this guide on a simple, but transferable, hypothetical decision problem. We guide the reader through the necessary steps and provide generic R code that is flexible and can be adapted for other models. We also show how this code can be extended to address more complex model structures and provide an efficient microsimulation approach that relies on vectorization solutions.
As the complexity of health decision science applications increases, high-level programming languages are increasingly adopted for statistical analyses and numerical computations. These programming languages facilitate sophisticated modeling, model documentation, and analysis reproducibility. Among the high-level programming languages, the statistical programming framework R is gaining increased recognition. R is freely available, cross-platform compatible, and open source. A large community of users who have generated an extensive collection of well-documented packages and functions supports it. These functions facilitate applications of health decision science methodology as well as the visualization and communication of results. Although R's popularity is increasing among health decision scientists, methodological extensions of R in the field of decision analysis remain isolated. The purpose of this article is to provide an overview of existing R functionality that is applicable to the various stages of decision analysis, including model design, input parameter estimation, and analysis of model outputs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.