Bacteria were first detected in human tumors more than 100 years ago, but the characterization of the tumor microbiome has remained challenging because of its low biomass. We undertook a comprehensive analysis of the tumor microbiome, studying 1526 tumors and their adjacent normal tissues across seven cancer types, including breast, lung, ovary, pancreas, melanoma, bone, and brain tumors. We found that each tumor type has a distinct microbiome composition and that breast cancer has a particularly rich and diverse microbiome. The intratumor bacteria are mostly intracellular and are present in both cancer and immune cells. We also noted correlations between intratumor bacteria or their predicted functions with tumor types and subtypes, patients’ smoking status, and the response to immunotherapy.
Bacteria have been found to play major roles in many physiologic/disease processes including cancer. The presence of bacteria within brain tumors has never been explored. The aim of this study was to examine the microbiome of Glioblastoma. A cohort of 40 glioblastoma samples (FFPE), from two medical centers served for DNA extraction using a specialized extraction protocol that includes a bead beating step to ensure complete bacterial DNA recovery. A set of negative controls was introduced at different steps of the assay to identify and monitor contaminating bacterial DNA. We measured the levels of bacterial DNA in the samples using a RT-qPCR assay, amplifying the bacterial 16S rRNA gene and detected bacterial DNA in over 40% of the samples. To characterize the bacterial taxa that are present in GBM tumors, we applied 16S DNA sequencing on the samples. After implementing a stringent set of filters on the sequencing data, eliminating contaminating signal, we detected a total of 22 bacterial taxa in GBM tumors. To visualize bacteria in GBM tissues and learn about their localization within the tissue we used immunohistochemistry staining with anti-lipopolysaccharide (LPS) and anti-lipoteichoic acid (LTA) antibodies detecting gram negative and gram positive bacteria (correspondingly). Bacteria were also visualized by staining bacterial RNA using a 16S rRNA in situ hybridization assay. Staining of a human GBM tissue microarray (TMA) containing 32 cases of GBM showed that the majority of cases stained positive for LPS and ~40% were positive for 16S rRNA staining. Bacterial LPS and 16S rRNA were localized mainly inside the tumor cells. Our study demonstrates, for the first time, that bacteria or bacterial components are present in human Glioblastoma tumors. We are currently expanding our study cohort in order to better define the bacteria found within glioblastoma samples and assess their possible effects
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.