Currently there is a lack in fundamental understanding of disease progression of most neurodegenerative diseases, and, therefore, treatments and preventative measures are limited. Consequently, there is a great need for adaptable, yet robust model systems to both investigate elementary disease mechanisms and discover effective therapeutics. We have generated a Tol2 Gateway-compatible toolbox to study neurodegenerative disorders in zebrafish, which includes promoters for astrocytes, microglia and motor neurons, multiple fluorophores, and compatibility for the introduction of genes of interest or disease-linked genes. This toolbox will advance the rapid and flexible generation of zebrafish models to discover the biology of the nervous system and the disease processes that lead to neurodegeneration.
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive, fatal neurodegenerative disease characterised by the death of upper and lower motor neurons. Approximately 10% of cases have a known family history of ALS and disease-linked mutations in multiple genes have been identified. ALS-linked mutations in CCNF were recently reported, however the pathogenic mechanisms associated with these mutations are yet to be established. To investigate possible disease mechanisms, we developed in vitro and in vivo models based on an ALS-linked missense mutation in CCNF. Proteomic analysis of the in vitro models identified the disruption of several cellular pathways in the mutant model, including caspase-3 mediated cell death. Transient overexpression of human CCNF in zebrafish embryos supported this finding, with fish expressing the mutant protein found to have increased levels of cleaved (activated) caspase-3 and increased cell death in the spinal cord. The mutant CCNF fish also developed a motor neuron axonopathy consisting of shortened primary motor axons and increased frequency of aberrant axonal branching. Importantly, we demonstrated a significant correlation between the severity of the CCNF-induced axonopathy and a reduced motor response to a light stimulus (photomotor response). This is the first report of an ALS-linked CCNF mutation in vivo and taken together with the in vitro model identifies the disruption of cell death pathways as a significant consequence of this mutation. Additionally, this study presents a valuable new tool for use in ongoing studies investigating the pathobiology of ALS-linked CCNF mutations.
We recently reported the discovery of nontoxic cyclam-derived compounds that are active against drug-resistant Mycobacterium tuberculosis. In this paper we report exploration of the structure-activity relationship for this class of compounds, identifying several simpler compounds with comparable activity. The most promising compound identified, possessing significantly improved water solubility, displayed high levels of bacterial clearance in an in vivo zebrafish embryo model, suggesting this compound series has promise for in vivo treatment of tuberculosis.
Host lipid metabolism is an important target for subversion by pathogenic mycobacteria such as Mycobacterium tuberculosis. The appearance of foam cells within the granuloma are well-characterised effects of chronic tuberculosis. The zebrafish-Mycobacterium marinum infection model recapitulates many aspects of human-M. tuberculosis infection and is used as a model to investigate the structural components of the mycobacterial granuloma. Here, we demonstrate that the zebrafish-M. marinum granuloma contains foam cells and that the transdifferentiation of macrophages into foam cells is driven by the mycobacterial ESX1 pathogenicity locus. This report demonstrates conservation of an important aspect of mycobacterial infection across species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.