Ti6Al4V is very commonly used for the production of dental implants. Titanium alloys whose mechanical and corrosion properties are equal or better than those of Ti6Al4V might present interest as plausible future materials, too. Ti6Al7Nb alloy was tested and compared to Ti6Al4V in this work. Samples of both alloys were oxidized in a water solution containing calcium acetate (Ca(CH 3 COO) 2) and calcium glycerophosphate (Ca(PO 4 CH(CH 2 OH) 2)) by Plasma Electrolytic Oxidation (PEO) for 20 min. After that, the samples were hydrothermally treated (HTT) in water (pH = 7) and in potassium hydroxide (KOH) solution (pH = 11) for 2 hours at 200°C in a pressurized reactor. The content and morphology of hydroxyapatite (HA) layers formed on the surface of both alloys after the PEO and subsequent HTT treatments were studied. The surface morphologies, elemental composition, and phase components were characterized by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), and X-Ray Diffraction (XRD), respectively. The surface roughness was measured by Atomic Force Microscope (AFM), and thickness measurements were made by SEM and thickness gauge. Corrosion measurements were performed for the comparison of the corrosion behavior of the two alloys.
Titanium and Titanium alloys are considered perfect materials for applications in a human body, such as artificial joints and dental implants. Ti6Al4V is a very common alloy used for dental implants, owing to its good mechanical properties and corrosion resistance. Nevertheless, because of uncertainties regarding the toxicity of vanadium and its influence on the human body, other titanium alloys containing no vanadium and retaining suitable properties are used. The aim of this study is to compare two viable titanium alloys, Ti6Al4V and Ti6Al7Nb, and to attain on their surface hydroxyapatite (HA) coating improving the osseointegration, as it simulates a human bone. In this work Ti6Al4V and Ti6Al7Nb were oxidized in a water solution of calcium acetate (Ca(CH3COO)2) and calcium glycerophosphate (Ca(PO4CH(CH2OH)2) by Plasma Electrolytic Oxidation (PEO) for 20 minutes and then were hydrothermally treated (HTT) in water (pH=7) and in KOH solution (pH=11) for 2 hours at 200°C in a pressurized reactor. The surface morphologies, elemental composition and phase components were characterized by Scanning Electron Microscopy, Energy Dispersive Spectroscopy and X-Ray Diffraction, respectively. The surface roughness was measured by Atomic Force Microscope (AFM) and thickness measurements were made by SEM and thickness gauge. Also, corrosion tests were made to evaluate the corrosion behavior of the two alloys.
Ti and Ti alloys are materials usually used in contact with hard tissue for applications such as artificial joints and dental implants. Ti6Al4V is a very common alloy used for dental implants, owing to its good mechanical properties and corrosion resistance. Nevertheless, because of uncertainties regarding the toxicity of vanadium and its influence on the human body, other Ti alloys containing no vanadium and retaining suitable properties are used. In this work Ti6Al4V and Ti6Al7Nb were oxidized in a water solution of calcium acetate (Ca(CH3COO)2) and calcium glycerophosphate (Ca(PO4CH(CH2OH)2) by Plasma Electrolytic Oxidation (PEO) for 20 minutes and then were hydrothermally treated (HTT) in water (pH=7) and in potassium hydroxide (KOH) solution (pH=11) for 2 hours at 200°C in a pressurized reactor. The surface morphologies, elemental composition and phase components were characterized by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-Ray Diffraction (XRD), respectively. The surface roughness was measured by Atomic Force Microscope (AFM) and thickness measurements were made by SEM and thickness gauge. Also, corrosion tests were made to evaluate the corrosion behavior of the two alloys. The aim of this study is to compare two viable Ti alloys, Ti6Al4V and Ti6Al7Nb, and to attain on their surface hydroxyapatite (HA) coating improving the osseointegration, as it simulates a human bone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.