Brown adipose tissue (BAT) thermogenesis is an emerging target for prevention and treatment of obesity. Mitochondria are the heat generators of BAT. Yet, there is no noninvasive means to image the temporal dynamics of the mitochondrial activity in BAT in vivo. Here, we report a technology for quantitative monitoring of principal kinetic components of BAT adaptive thermogenesis in the living animal, using the PET imaging voltage sensor 18F-fluorobenzyltriphenylphosphonium (18F-FBnTP). 18F-FBnTP targets the mitochondrial membrane potential (ΔΨm)—the voltage analog of heat produced by mitochondria. Dynamic 18F-FBnTP PET imaging of rat’s BAT was acquired just before and during localized skin cooling or systemic pharmacologic stimulation, with and without administration of propranolol. At ambient temperature, 18F-FBnTP demonstrated rapid uptake and prolonged steady-state retention in BAT. Conversely, cold-induced mitochondrial uncoupling resulted in an immediate washout of 18F-FBnTP from BAT, which was blocked by propranolol. Specific variables of BAT evoked activity were identified and quantified, including response latency, magnitude and kinetics. Cold stimulation resulted in partial washout of 18F-FBnTP (39.1%±14.4% of basal activity). The bulk of 18F-FBnTP washout response occurred within the first minutes of the cold stimulation, while colonic temperature remained nearly intact. Drop of colonic temperature to shivering zone did not have an additive effect. The ß3-adrenergic agonist CL-316,243 elicited 18F-FBnTP washout from BAT of kinetics similar to those caused by cold stimulation. Thus, monitoring ΔΨm in vivo using 18F-FBnTP PET provides insights into the kinetic physiology of BAT. 18F-FBnTP PET depicts BAT as a highly sensitive and rapidly responsive organ, emitting heat in short burst during the first minutes of stimulation, and preceding change in core temperature. 18F-FBnTP PET provides a novel set of quantitative metrics highly important for identifying novel therapeutic targets at the mitochondrial level, for developing means to maximize BAT mass and activity, and assessing intervention efficacy.
Objective:
To determine whether resistance training is similarly effective in reducing skeletal muscle efficiency and increasing strength in weight-reduced and maximal weight subjects.
Methods:
We examined the effects of supervised resistance exercise on skeletal muscle in 14 overweight and obese individuals sustaining a 10% or greater weight loss for over 6 months, and a phenotypically similar group of 15 subjects who were nonweight-reduced and weight stable at their maximal lifetime body weight. We assessed skeletal muscle work efficiency and fuel utilization (bicycle ergometry), strength (dynamometry), body composition (dual energy x-ray absorptiometry), and resting energy expenditure (indirect calorimetry) before and after 12 weeks of thrice weekly resistance training.
Results:
Non-weight-reduced subjects were significantly (10–20%) stronger before and after the intervention than reduced weight subjects and gained significantly more fat-free mass with a greater decline in % body fat than weight-reduced subjects. Resistance training resulted in similar significant decreases (~10 %) in skeletal muscle work efficiency at low level exercise and ~10–20% increases in leg strength in both weight-reduced and non-weight-reduced subjects.
Conclusion:
Resistance training similarly increases muscle strength and decreases efficiency regardless of weight loss history. Increased resistance training could be an effective adjunct to reduced-weight maintenance therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.