Many theories of brain function assume that information is encoded and behaviour is controlled through sparse, distributed patterns of activity. It is therefore crucial to place a lower bound on the amount of neural activity that can drive behaviour and to understand how neuronal networks operate within these constraints. We use an all-optical approach to test this lower limit by driving behaviour with targeted two-photon optogenetic activation of small ensembles of L2/3 pyramidal neurons in mouse barrel cortex while using two-photon calcium imaging to record the impact on the local network. By precisely titrating the number of neurons in activated ensembles we demonstrate that the lower bound for detection of cortical activity is ~14 pyramidal neurons. We show that there is a very steep sigmoidal relationship between the number of activated neurons and behavioural output, saturating at only ~37 neurons, and that this relationship can shift with learning. By simultaneously measuring activity in the local network, we show that the activation of stimulated ensembles is balanced by the suppression of neighbouring neurons. This surprising behavioural sensitivity in the face of potent network suppression supports the sparse coding hypothesis and suggests that perception of cortical activity balances a trade-off between minimizing the impact of noise while efficiently detecting relevant signals.
Mapping connections in the neonatal brain can provide insight into the crucial early stages of neurodevelopment that shape brain organisation and lay the foundations for cognition and behaviour. Diffusion MRI and tractography provide unique opportunities for such explorations, through estimation of white matter bundles and brain connectivity. Atlas-based tractography protocols, i.e. apriori defined sets of masks and logical operations in a template space, have been commonly used in the adult brain to drive such explorations. However, rapid growth and maturation of the brain during early development make it challenging to ensure correspondence and validity of such atlas-based tractography approaches in the developing brain. An alternative can be provided by data-driven methods, which do not depend on predefined regions of interest. Here, we develop a novel data-driven framework to extract white matter bundles and their associated grey matter networks from neonatal tractography data, based on non-negative matrix factorisation that is inherently suited to the non-negative nature of structural connectivity data. We also develop a non-negative dual regression framework to map group-level components to individual subjects. Using in-silico simulations, we evaluate the accuracy of our approach in extracting connectivity components and compare with an alternative data-driven method, independent component analysis. We apply non-negative matrix factorisation to whole-brain connectivity obtained from publicly available datasets from the Developing Human Connectome Project, yielding grey matter components and their corresponding white matter bundles. We assess the validity and interpretability of these components against traditional tractography results and greymatter networks obtained from resting-state fMRI in the same subjects. We subsequently use them to generate a parcellation of the neonatal cortex using data from 323 new-born babies and we assess the robustness and reproducibility of this connectivity-driven parcellation.
Developmental and evolutionary effects on brain organization are complex, yet linked, as evidenced by the correspondence in cortical area expansion across these vastly different time scales. However, it is still not possible to study concurrently the ontogeny and phylogeny of cortical areal connections, which is arguably more relevant to brain function than allometric measurements. Here, we propose a novel framework that allows the integration of structural connectivity maps from humans (adults and neonates) and nonhuman primates (macaques) onto a common space. We use white matter bundles to anchor the common space and use the uniqueness of cortical connection patterns to these bundles to probe area specialization. This enabled us to quantitatively study divergences and similarities in connectivity over evolutionary and developmental scales, to reveal brain maturation trajectories, including the effect of premature birth, and to translate cortical atlases between diverse brains. Our findings open new avenues for an integrative approach to imaging neuroanatomy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.