Herein, a three-stage support vector machine (SVM) for facial expression recognition is proposed. The first stage comprises 21 SVMs, which are all the binary combinations of seven expressions. If one expression is dominant, then the first stage will suffice; if two are dominant, then the second stage is used; and, if three are dominant, the third stage is used. These multilevel stages help reduce the possibility of experiencing an error as much as possible. Different image preprocessing stages are used to ensure that the features attained from the face detected have a meaningful and proper contribution to the classification stage. Facial expressions are created as a result of muscle movements on the face. These subtle movements are detected by the histogram-oriented gradient feature, because it is sensitive to the shapes of objects. The features attained are then used to train the three-stage SVM. Two different validation methods were used: the leave-one-out and K-fold tests. Experimental results on three databases (Japanese Female Facial Expression, Extended Cohn-Kanade Dataset, and Radboud Faces Database) show that the proposed system is competitive and has better performance compared with other works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.