Functional traits offer a rich quantitative framework for developing and testing theories in evolutionary biology, ecology and ecosystem science. However, the potential of functional traits to drive theoretical advances and refine models of global change can only be fully realised when species-level information is complete. Here we present the AVONET dataset containing comprehensive functional trait data for all birds, including six ecological variables, 11 continuous morphological traits, and information on range size and location. Raw morphological measurements are presented from 90,020 individuals of 11,009 extant bird species sampled from 181 countries. These data are also summarised as species averages in three taxonomic formats, allowing integration with a global phylogeny, geographical range maps, IUCN Red List data and the eBird citizen science database. The AVONET dataset provides the most detailed picture of continuous trait variation for any major radiation of organisms, offering a global template for testing hypotheses and exploring the evolutionary origins, structure and functioning of biodiversity.
Aim Ecological data collected by the general public are valuable for addressing a wide range of ecological research and conservation planning, and there has been a rapid increase in the scope and volume of data available. However, data from eBird or other large‐scale projects with volunteer observers typically present several challenges that can impede robust ecological inferences. These challenges include spatial bias, variation in effort and species reporting bias. Innovation We use the example of estimating species distributions with data from eBird, a community science or citizen science (CS) project. We estimate two widely used metrics of species distributions: encounter rate and occupancy probability. For each metric, we critically assess the impact of data processing steps that either degrade or refine the data used in the analyses. CS data density varies widely across the globe, so we also test whether differences in model performance are robust to sample size. Main conclusions Model performance improved when data processing and analytical methods addressed the challenges arising from CS data; however, the degree of improvement varied with species and data density. The largest gains we observed in model performance were achieved with 1) the use of complete checklists (where observers report all the species they detect and identify, allowing non‐detections to be inferred) and 2) the use of covariates describing variation in effort and detectability for each checklist. Occupancy models were more robust to a lack of complete checklists. Improvements in model performance with data refinement were more evident with larger sample sizes. In general, we found that the value of each refinement varied by situation and we encourage researchers to assess the benefits in other scenarios. These approaches will enable researchers to more effectively harness the vast ecological knowledge that exists within CS data for conservation and basic research.
Metabolism is the link between ecology and physiology-it dictates the flow of energy through individuals and across trophic levels. Much of the predictive power of metabolic theories of ecology derives from the scaling relationship between organismal size and metabolic rate. There is growing evidence that this scaling relationship is not universal, but we have little knowledge of how it has evolved over macroevolutionary time. Here we develop a novel phylogenetic comparative method to investigate how often and in which clades the macroevolutionary dynamics of the metabolic scaling have changed. We find strong evidence that the metabolic scaling relationship has shifted multiple times across the vertebrate phylogeny. However, shifts are rare and otherwise strongly constrained. Importantly, both the estimated slope and intercept values vary widely across regimes, with slopes that spanned across theoretically predicted values such as 2/3 or 3/4. We further tested whether traits such as ecto-/endothermy, genome size, and quadratic curvature with body mass (i.e., energetic constraints at extreme body sizes) could explain the observed pattern of shifts. Though these factors help explain some of the variation in scaling parameters, much of the remaining variation remains elusive. Our results lay the groundwork for further exploration of the evolutionary and ecological drivers of major transitions in metabolic strategy and for harnessing this information to improve macroecological predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.