The goal of the eddy current flow meter (ECFM) is to monitor velocities and temperatures of conductive liquid metals. The ECFM can also detect voids in two-phase liquid metal flows. Measurement of these flows can greatly improve the accuracy of the empirical formulas used for fluid dynamics near the reactor core and aid in mapping any non-uniformities in fluid flow such as estimates of temperature and phase. While the eventual goal is to develop the ECFM for the liquid sodium surrounding the Versatile Test Reactor (VTR) core, this report focuses on modeling and experimental validation of ECFM for a moving solid test rod and for liquid mercury in the Target Test Facility (TTF) flow loop to better understand and further develop ECFM measurement capabilities by validating model predictions with benchmark experiments. Eventually the models could be used to design and optimize future ECFMs for specific applications such as monitoring flow within the VTR pool.
This report discusses the initial progress made at the Oak Ridge National Laboratory to support direct disposal of dual-purpose canisters (DPCs) using filler materials to demonstrate that the probability of criticality in DPCs during disposal to be below the probability for inclusion in a repository performance assessment. In the initial phase of a multi-phase effort that will result in a full-scale demonstration, a computational fluid dynamics (CFD) model was developed to gauge the filling process and to uncover any unforeseen issues. The initial filling simulations of the lower region (mouse holes) of a prototypic DPC show successful removal of the inner space voids and smooth, even progression of the liquid level. In the initial phase, flow through a pipe that is similar to the drain pipe in a DPC will be investigated separately to gain valuable insight of flow regime inside a pipe. The initial experimental setups for validating the computational filling model have been designed, and the various assembly parts are being procured. The experience gained from the initial experiments will be applied to the next steps toward a full-scale demonstration and to the validation of multiphysics filling simulation models.
No abstract
This report discusses the initial progress made at the Oak Ridge National Laboratory to support direct disposal of dual-purpose canisters (DPCs) using filler materials to demonstrate that the probability of criticality in DPCs during disposal to be below the probability for inclusion in a repository performance assessment. In the initial phase of a multi-phase effort that will result in a full-scale demonstration, a computational fluid dynamics (CFD) model was developed to gauge the filling process and to uncover any unforeseen issues. The initial filling simulations of the lower region (mouse holes) of a prototypic DPC show successful removal of the inner space voids and smooth, even progression of the liquid level. In the initial phase, flow through a pipe that is similar to the drain pipe in a DPC will be investigated separately to gain valuable insight of flow regime inside a pipe. The initial experimental setups for validating the computational filling model have been designed, and the various assembly parts are being procured. The experience gained from the initial experiments will be applied to the next steps toward a full-scale demonstration and to the validation of multiphysics filling simulation models.
This report discusses the initial progress made at the Oak Ridge National Laboratory to support direct disposal of dual-purpose canisters (DPCs) using filler materials to demonstrate that the probability of criticality in DPCs during disposal to be below the probability for inclusion in a repository performance assessment. In the initial phase of a multi-phase effort that will result in a full-scale demonstration, a computational fluid dynamics (CFD) model was developed to gauge the filling process and to uncover any unforeseen issues. The initial filling simulations of the lower region (mouse holes) of a prototypic DPC show successful removal of the inner space voids and smooth, even progression of the liquid level. In the initial phase, flow through a pipe that is similar to the drain pipe in a DPC will be investigated separately to gain valuable insight of flow regime inside a pipe. The initial experimental setups for validating the computational filling model have been designed, and the various assembly parts are being procured. The experience gained from the initial experiments will be applied to the next steps toward a full-scale demonstration and to the validation of multiphysics filling simulation models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.